Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical investigation of impedance matching in the process of sum-frequency generation in an external resonator

Yan Xiao-Juan Ma Wei-Guang Tan Wei

Citation:

Theoretical investigation of impedance matching in the process of sum-frequency generation in an external resonator

Yan Xiao-Juan, Ma Wei-Guang, Tan Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The sum-frequency conversion efficiency is directly proportional to the product of two fundamental laser powers. Therefore, sum-frequency conversion efficiency is rather low when the fundamental beams pass through a nonlinear crystal only once. External resonant technique as an effective means of improving the powers of the fundamental light has been widely applied to the field of nonlinear frequency conversion. This technique can greatly improve the sum-frequency conversion efficiency and is particularly suitable for the situation in which the input power of the fundamental frequency lasers bas been limited. The implementation of high efficient sum-frequency generation in an external resonator requires that the fundamental frequency laser should be efficiently coupled to the external cavity. Therefore, the system needs to achieve impedance matching. In the part of theoretical analysis, first, we derive the enhancement factor when travelingwave cavity is resonant, and then, establish the theoretical models of doubly resonant and singly resonant sum-frequency generation in an external resonator respectively. The variation of enhancement factors as functions of reflectivity of the input couplers and power of the input fundamental light for doubly resonant and singly resonant sum-frequency systems is derived from Boyd-Kleinman theory in detail based on the theoretical models described in the text. The expressions of enhancement factors reflect the nonlinear correlation characteristics of two fundamental light beams in the process of sum-frequency generation. In the part of numerical simulation, firstly, we draw contour plots of output power as functions of reflectivity of the input couplers at two input frequencies in the doubly resonant sum-frequency system by theoretical simulation, and achieve an optimum reflectivity of the input couplers under the condition of different powers of input fundamental light. Secondly, we draw the contour plots of output power as functions of the reflectivity of the input coupler at the resonant frequency, and the input power of non-resonant frequency light in the singly resonant sum-frequency system by theoretical simulation, and achieve an optimum reflectivity of the input coupler at the resonant frequency. These optimum values enable the system to achieve impedance matching; consequently, the sum-frequency conversion efficiency is improved. Finally, this paper analyzes the influence of input power on the impedance matching, and shows that the optimal coupling mirror reflectivity of the resonant fundamental frequency will decrease with the increase of incident power of the other resonant or non-resonant fundamental frequency laser, otherwise, the resonant incident power of its own has less influence on the optimal coupling mirror reflectivity, whether the system undergoes doubly resonant or singly resonant sum-frequency. In addition, if the coupling mirror reflectivity exceeds the optimum value, the power of sum-frequency light will decrease rapidly, while if it is less than the optimum value, the power of sum-frequency light decreases relatively slowly. Therefore an input coupler that may yield over-coupling should be avoided. These results will have a certain guiding significance to related experiments.
      Corresponding author: Yan Xiao-Juan, yanxj@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61178009, 61275213, 11304189), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021105).
    [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118

    [2]

    Maker P D, Terhune R W, Nisenoff C M, Savage C 1962 Phys. Rev. Lett. 8 21

    [3]

    Giordmine J 1962 Phys. Rev. Lett. 8 19

    [4]

    Foltynowicz A, Ban T, Masłwski P, Adler F, Ye J 2011 Phys. Rev. Lett. 107 233002

    [5]

    Sugiyama K, Kawajiri S, Yabu N, Matsumoto K, Kitano M 2010 Appl. Opt. 49 5510

    [6]

    Hollemann G, Braun B, Dorsch F, Hennig P, Heistulf P, Kutschki U, Voelckel H 2000 Proc. SPIE 3954 140

    [7]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208

    [8]

    Yan X J, Li Z X, Zhang Y Z, Tan W, Fu X F, Ma W G, Zhang L, Yin W B, Jia S T 2012 Acta Sin. Quantum Opt. 18 197 (in Chinese) [闫晓娟, 李志新, 张永智, 谭巍, 付小芳, 马维光, 张雷, 尹王保, 贾锁堂 2012 量子光学学报 18 197]

    [9]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597

    [10]

    Wen X, Han Y H, Bai J D, He J, Wang Y H, Yang B D, Wang J M 2014 Opt. Express 22 32293

    [11]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624

    [12]

    Yan X J, Li Z X, Zhang Y Z, Wang L, Hu Z Y, Ma W G, Zhang L, Yin W B, Jia S T 2011 Acta Phys. Sin. 60 104210 (in Chinese) [闫晓娟, 李志新, 张永志, 王乐, 胡志裕, 马维光, 张雷, 尹王保, 贾锁堂 2011 物理学报 60 104210]

    [13]

    Tan W, Fu X F, Li Z X, Zhao G, Yan X J, Ma W G, Dong L, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 094211 (in Chinese) [谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂 2013 物理学报 62 094211]

    [14]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [15]

    Kumagai H 2007 Opt. Lett. 32 62

    [16]

    Andersen M T, Schlosser P J, Hastie J E, Tidemand-Lichtenberg P, Dawson M D, Pedersen C 2009 Opt. Express 17 6010

    [17]

    Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31

    [18]

    Samblowski A, Vollmer C E, Baune C, Fiurek J, Schnabel R 2014 Opt. Lett. 39 2979

  • [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118

    [2]

    Maker P D, Terhune R W, Nisenoff C M, Savage C 1962 Phys. Rev. Lett. 8 21

    [3]

    Giordmine J 1962 Phys. Rev. Lett. 8 19

    [4]

    Foltynowicz A, Ban T, Masłwski P, Adler F, Ye J 2011 Phys. Rev. Lett. 107 233002

    [5]

    Sugiyama K, Kawajiri S, Yabu N, Matsumoto K, Kitano M 2010 Appl. Opt. 49 5510

    [6]

    Hollemann G, Braun B, Dorsch F, Hennig P, Heistulf P, Kutschki U, Voelckel H 2000 Proc. SPIE 3954 140

    [7]

    Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208

    [8]

    Yan X J, Li Z X, Zhang Y Z, Tan W, Fu X F, Ma W G, Zhang L, Yin W B, Jia S T 2012 Acta Sin. Quantum Opt. 18 197 (in Chinese) [闫晓娟, 李志新, 张永智, 谭巍, 付小芳, 马维光, 张雷, 尹王保, 贾锁堂 2012 量子光学学报 18 197]

    [9]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597

    [10]

    Wen X, Han Y H, Bai J D, He J, Wang Y H, Yang B D, Wang J M 2014 Opt. Express 22 32293

    [11]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624

    [12]

    Yan X J, Li Z X, Zhang Y Z, Wang L, Hu Z Y, Ma W G, Zhang L, Yin W B, Jia S T 2011 Acta Phys. Sin. 60 104210 (in Chinese) [闫晓娟, 李志新, 张永志, 王乐, 胡志裕, 马维光, 张雷, 尹王保, 贾锁堂 2011 物理学报 60 104210]

    [13]

    Tan W, Fu X F, Li Z X, Zhao G, Yan X J, Ma W G, Dong L, Zhang L, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 094211 (in Chinese) [谭巍, 付小芳, 李志新, 赵刚, 闫晓娟, 马维光, 董磊, 张雷, 尹王保, 贾锁堂 2013 物理学报 62 094211]

    [14]

    Bienfang J C, Denman C A, Grime B W, Hillman P D, Moore G T, Telle J M 2003 Opt. Lett. 28 2219

    [15]

    Kumagai H 2007 Opt. Lett. 32 62

    [16]

    Andersen M T, Schlosser P J, Hastie J E, Tidemand-Lichtenberg P, Dawson M D, Pedersen C 2009 Opt. Express 17 6010

    [17]

    Mimoun E, Sarlo L D, Zondy J J, Dalibard J, Gerbier F 2010 Appl. Phys. B 99 31

    [18]

    Samblowski A, Vollmer C E, Baune C, Fiurek J, Schnabel R 2014 Opt. Lett. 39 2979

  • [1] Xie Bing-Hong, Xu Guo-Kai, Xiao Shao-Qiu, Yu Zhong-Jun, Zhu Da-Li. Resonance magnetoelectric effect analysis and output power optimization of nonlinear magnetoelectric transducer model. Acta Physica Sinica, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [2] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [3] Qiu Xiao-Lang, Wang Shuang-Shuang, Zhang Xiao-Jian, Zhu Ren-Jiang, Zhang Peng, Guo-Yu He-Yang, Song Yan-Rong. Dual-wavelength external-cavity surface-emitting laser. Acta Physica Sinica, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [4] Zhang Xu-Dong, Chu Yu-Xi, Jia Wei, Hu Ming-Lie. Ultraviolet picosecond conversion efficiency improvement system at 355 nm based on fundamental frequency laser amplified. Acta Physica Sinica, 2019, 68(20): 200601. doi: 10.7498/aps.68.20190876
    [5] Xie Shi-Yong, Zhang Xiao-Fu, Yang Cheng-Liang, Le Xiao-Yun, Bo Yong, Cui Da-Fu, Xu Zu-Yan. Continuous-wave single-frequency 589 nm yellow laser generated from sum frequency of single-block non-planar ring cavity laser in periodically poled KTiOPO4 crystal. Acta Physica Sinica, 2016, 65(9): 094203. doi: 10.7498/aps.65.094203
    [6] Tan Wei, Qiu Xiao-Dong, Zhao Gang, Hou Jia-Jia, Jia Meng-Yuan, Yan Xiao-Juan, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion. Acta Physica Sinica, 2016, 65(7): 074202. doi: 10.7498/aps.65.074202
    [7] Zhao Kai, Mu Zong-Xin, Zhang Jia-Liang. Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor. Acta Physica Sinica, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [8] Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping. Injection-locking of magnetrons with matched impedance. Acta Physica Sinica, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [9] Tan Wei, Fu Xiao-Fang, Li Zhi-Xin, Zhao Gang, Yan Xiao-Juan, Ma Wei-Guang, Dong Lei, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom. Acta Physica Sinica, 2013, 62(9): 094211. doi: 10.7498/aps.62.094211
    [10] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [11] Li Bin, Yao Jian-Quan, Ding Xin, Wang Peng, Zhang Fan. Laser diode-pumped coaxial double crystals yellow laser. Acta Physica Sinica, 2011, 60(2): 024208. doi: 10.7498/aps.60.024208
    [12] Yan Xiao-Juan, Li Zhi-Xin, Zhang Yong-Zhi, Wang Le, Hu Zhi-Yu, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. The Hansch-Couillaud frequency locking mechanism of dual-wavelength external cavity resonance system based on diffusion bonded KTP crystal. Acta Physica Sinica, 2011, 60(10): 104210. doi: 10.7498/aps.60.104210
    [13] Xiao Ting, Yang He-Lin, Xiao Bo-Xun, Cheng Yong-Zhi. Study on the simulation and measurement of ring structures metamaterial absorber. Acta Physica Sinica, 2010, 59(8): 5715-5719. doi: 10.7498/aps.59.5715
    [14] Zhang Yan-Ping, Zhao Xiao-Peng, Bao Shi, Luo Chun-Rong. Dendritic metamaterial absorber based on the impedance matching. Acta Physica Sinica, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [15] Wang Zheng, Zhao Xin-Jie, He Ming, Zhou Tie-Ge, Yue Hong-Wei, Yan Shao-Lin. Simulations of impedance matching and phase locking of Josephson junction arrays embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [16] Xiao Han, Tang Jia-Shi, Liang Cui-Xiang. Saddle-node bifurcation control of a spring pendulum with single-frequency excitation. Acta Physica Sinica, 2009, 58(5): 2989-2995. doi: 10.7498/aps.58.2989
    [17] Yu Song, Zhang Hua, Shen Jing, Zhang Yong-Jun, Gu Wan-Yi. A tunable wavelength routing scheme based on the sum-and difference-frequency generation with double pass configuration and its applications. Acta Physica Sinica, 2008, 57(2): 909-916. doi: 10.7498/aps.57.909
    [18] Wang Peng, Zhao Huan, Wang Zhao-Hua, Li De-Hua, Wei Zhi-Yi. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses. Acta Physica Sinica, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [19] Gan Chen-Li, Zhang Yan-Peng, Feng Yu, Yu Xiao-Jun, Wang Jie, Li Chuang-She, Song Jian-Ping, Lu Ke-Qing, Hou Xun. V type three-level symmetric second-order coherence theory of attosecond polarization beats. Acta Physica Sinica, 2005, 54(2): 726-735. doi: 10.7498/aps.54.726
    [20] FAN PIN-ZHONG, E.FILL. EXPERIMENT ON WAVELENGTH MATCHES BETWEEN PUMPING AND ABSORBING LINES IN PHOTO-RESONANT X-RAY LASERS. Acta Physica Sinica, 1996, 45(2): 205-209. doi: 10.7498/aps.45.205
Metrics
  • Abstract views:  5864
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2015
  • Accepted Date:  23 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回