Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diameter monodispersity of imogolite-like nanotube: a density functional theory study

Wang Ya-Jing Li Gui-Xia Wang Zhi-Hua Gong Li-Ji Wang Xiu-Fang

Citation:

Diameter monodispersity of imogolite-like nanotube: a density functional theory study

Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The diameter monodispersity and the surface charge distribution of three imogolite-like nanotubes (not substituted (IMO), substituted by NH2 (IMO-NH2), substituted by F (IMO-F) are investigated using self-consistent periodic density functional theory, and the phenomenon of the monodispersity is explained qualitatively in terms of bond length. We assume that the axial length of the nanotube is constant and confirm it; the energetic minimum axial lengths of the three nanotubes increase in the sequence IMO_NH2 IMO IMO_F, and are respectively 8.61, 8.62 and 8.66 . Then the energies for different nanotubes and lamellar structures are calculated. A series of strain energy curves of IMO, IMO_NH2 and IMO_F are plotted based on calculations, and the results show that the energetic minimum diameters of these three nanotubes increase in the sequence of IMO IMO_NH2 IMO_F, and are respectively N= 9, 10 and 11. In order to explain the diameter monodispersity, we have calculated the bond lengths of SiO, AlO and AlOH three nanotubes and plotted the curves of length against diameter. Results show that the monodispersity can be attributed to the interaction between the energy increase resulting from the stretching of the SiO, AlO bonds in the inner wall, and the energy decreases caused by the shortening of the AlOH bond in the outer wall. In a word, with the increase of tube diameter, the SiO and AlO bonds increase while the AlOH bond decreases monotonically. Additionally, we have also calculated the Mulliken charge distributions of the three nanotubes with different diameter and analysed their surface charges. On this basis, we summarize the effect of diameter on surface charge. Results show that the main positive charges are accumulating on the outer surface while the negative charges are located on the inner region, and the outer surface charge increases gradually with the increase of the diameter of the nanotubes. The study indicates that the internal surface functional group has an effect on the axial length, diameter and surface charge of the imogolite-like nanotubes. We can control the nanotube diameter and surface charge distribution by changing different functional substitutes in the inner surface; it is significant in the molecular design and application of imogolite-like materials.
      Corresponding author: Li Gui-Xia, qdguixiali@126.com;wangxiufanghappy@163.com ; Wang Xiu-Fang, qdguixiali@126.com;wangxiufanghappy@163.com
    • Funds: Project supported by the Chunhui Project of Ministry of Education of China (Grant No. Z2011120), the Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, China (Grant No. 13zxnk06), the Yibin University Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, China (Grant No. JSWL2014KF01).
    [1]

    Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225

    [2]

    Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744

    [3]

    Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235

    [4]

    Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163

    [5]

    Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417

    [6]

    Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142

    [7]

    Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799

    [8]

    Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459

    [9]

    Su C, Harsh J B 1993 Clays Clay Miner. 41 461

    [10]

    Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187

    [11]

    Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]

    [12]

    Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367

    [13]

    Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548

    [14]

    Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350

    [15]

    Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]

    [16]

    Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]

    [17]

    Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]

    [18]

    Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]

    [19]

    Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945

    [20]

    Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68

    [21]

    Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227

    [22]

    da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16

    [23]

    Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272

    [24]

    Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105

    [25]

    Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900

    [26]

    Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429

    [27]

    Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271

    [28]

    Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226

    [29]

    Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417

    [30]

    Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362

    [31]

    Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401

    [32]

    Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834

    [33]

    Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421

    [34]

    Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303

    [35]

    Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255

    [36]

    Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]

    [37]

    Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320

    [38]

    Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130

    [39]

    Gustafsson J P 2001 Clays Clay Miner. 49 73

    [40]

    Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702

  • [1]

    Sehgal R, Brinker C J, Huling J C 1995 International conference on inorganic membranes Worcester, USA, July 10-14, 1994 p101225

    [2]

    Bottero I, Bonelli B, Ashbrook S E, Wright P A, Zhou W Z, Tagliabue M, Armandi M, Garrone E 2011 Phys. Chem. Chem. Phys. 13 744

    [3]

    Zang J, Chempath S, Konduri S, Nair S, Sholl D S 2010 J. Phys. Chem. Lett. 1 1235

    [4]

    Kang D Y, Brunelli N A, Yucelen G I, Venkatasubramanian A, Zang J, Leisen J, Hesketh P J, Jones C W 2014 Nat. Commun. 5 163

    [5]

    Zanzottera C, Armandi M, Esposito S, Garrone E, Bonelli B 2012 J. Phys. Chem. C 116 20417

    [6]

    Nakagaki S, Wypych F 2007 J. Colloid Interface Sci. 315 142

    [7]

    Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I 2004 J. Mater. Sci. 39 1799

    [8]

    Farmer V C, Adams M J, Fraser A R, Palmieri F 1983 Clay Miner. 18 459

    [9]

    Su C, Harsh J B 1993 Clays Clay Miner. 41 461

    [10]

    Cradwick P D G, Farmer V C, Russell J D, Masson C R, Wada K, Yoshinaga N 1972 Nature 240 187

    [11]

    Foreign Trend 2006 Modern Chemical Industry 26 71 (in Chinese) [国外动态 2006 现代化工 26 71]

    [12]

    Konduri S, Tong H M, Chempath S, Nair S 2008 J. Phys. Chem. C 112 15367

    [13]

    Zang J, Konduri S, Nair S, Sholl D S 2009 Acs. Nano 3 1548

    [14]

    Dvoyashkin M, Zang J, Yucelen G I, Katihar A, Nair S, Sholl D S, Bowers C R, Vasenkov S 2012 J. Phys. Chem. C 116 21350

    [15]

    Zhang T L, Wang Z L 1989 Acta Petrol. Mineral. 8 347 (in Chinese) [张天乐, 王宗良 1989 岩石矿物学杂志 8 347]

    [16]

    Wang H L, Li J B, Huang Y, Zou A H 1997 Mater. Rev. 11 34 (in Chinese) [王厚亮, 李建保, 黄勇, 邹爱红 1997 材料导报 11 34]

    [17]

    Yang H X, Su Z H 2007 Chin. Sci. Bull. 52 1719 (in Chinese) [杨慧娴, 苏朝晖 2007 科学通报 52 1719]

    [18]

    Ma Z, Zhu W J, Ding T, Qi X Z 2015 J. Chin. Ceram. Soc. 34 1282 (in Chinese) [马智, 朱伟佳, 刘焕焕, 丁彤, 齐晓周 2015 硅酸盐通报 34 1282]

    [19]

    Loureco M P, Guimares L, Da Silva M C, de Oliveira C, Heine T, Duarte H A 2014 J. Phys. Chem. C 118 5945

    [20]

    Park G, Lee H, Lee S U, Sohn D 2014 Mol. Cryst. Liq. Cryst. 599 68

    [21]

    Gonzlez R I, Ramez R, Rogan J, Valdivia J A, Munoz F, Valencia F, Ramirez M, Kiwi M 2014 J. Phys. Chem. C 118 28227

    [22]

    da Silva M C, Dos Santos E C, Loureco M P, Gouvea M P, Duarte H A 2015 Front. Mater. 2 16

    [23]

    Poli E, Elliott J D, Hine N D M, Mostofi A A, Teobaldi G 2015 Mater Res. Innov. 19 S272

    [24]

    Bursill L A, Peng J L, Bourgeois L N 2000 Phil. Mag. A 80 105

    [25]

    Mukherjee S, Bartlow V M, Nair S 2005 Chem. Mater. 17 4900

    [26]

    Koenderink G H, Kluijtmans S G, Philipse A P 1999 J. Colloid Interface Sci. 216 429

    [27]

    Tamura K, Kawamura K 2002 J. Phys. Chem. B 106 271

    [28]

    Lee S U, Choi Y C, Youm S G, Sohn D 2011 J. Phys. Chem. C 115 5226

    [29]

    Demichelis R, Nol Y, D'Arco P, Maschio L, Orlando R, Dovesi R 2010 J. Mater. Chem. 20 10417

    [30]

    Guimares L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G 2007 Acs. Nano 1 362

    [31]

    Konduri S, Mukherjee S, Nair S 2006 Phys. Rev. B 74 033401

    [32]

    Zhao M W, Xia Y Y, Mei L M 2009 J. Phys. Chem. C 113 14834

    [33]

    Alvarez-Ramrez F 2007 Phys. Rev. B 76 125421

    [34]

    Guimares L, Pinto Y N, Lourenco M P, Duarte H A 2013 Phys. Chem. Chem. Phys. 15 4303

    [35]

    Cygan R T, Liang J J, Kalinichev A G 2004 J. Phys. Chem. B 108 1255

    [36]

    Li L J 2008 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [李丽娟 2008 博士学位论文 (济南: 山东大学)]

    [37]

    Schrder K P, Sauer J, Leslie M, Richard C, Catlow A 1992 Chem. Phys. Lett. 188 320

    [38]

    Sainz-Diaz C I, Hernandez-Laguna A, Dove M T 2001 Phys. Chem. Miner. 28 130

    [39]

    Gustafsson J P 2001 Clays Clay Miner. 49 73

    [40]

    Li L J, Xia Y Y, Zhao M W, Song C, Li J L, Liu X D 2008 Nanotechnology 19 175702

  • [1] Li Ya-Sha, Xia Yu, Liu Shi-Chong, Qu Cong. Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2022, 71(5): 052101. doi: 10.7498/aps.71.20211611
    [2] Surface discharge of bulk materials from the change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211611
    [3] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [6] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [9] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [10] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Mang Chao-Yong, Gou Gao-Zhang, Liu Cai-Ping, Wu Ke-Chen. Density functional study on chirospectra of bruguierols. Acta Physica Sinica, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
    [13] Fan Bing-Bing, Wang Li-Na, Wen He-Jing, Guan Li, Wang Hai-Long, Zhang Rui. Study on the structure of water chain encapsulated in carbon nanotube by density functional theory. Acta Physica Sinica, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
Metrics
  • Abstract views:  5324
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2015
  • Accepted Date:  14 November 2015
  • Published Online:  05 February 2016

/

返回文章
返回