Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-Field Modeling of Facet Hexagonal Spirals with Anisotropy, Deposition, and Kinetic Effects

Dong Xiang-Lei Xing Hui Chen Chang-Le Sha Sha Wang Jian-Yuan Jin Ke-Xin

Citation:

Phase-Field Modeling of Facet Hexagonal Spirals with Anisotropy, Deposition, and Kinetic Effects

Dong Xiang-Lei, Xing Hui, Chen Chang-Le, Sha Sha, Wang Jian-Yuan, Jin Ke-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we perform the quantitative phase-field simulations based on the surface morphology and growth regime of the hexagonal GaN spiral structure. We investigate the highly anisotropic energy, the deposition rate and the kinetic attachment and detachment effects. A regularized equation including the modified gradient coefficient is employed to study the anisotropic effect. Results show that the highly anisotropic energy modulates the equilibrium state by changing the local curvature of the tip step and thus leading to the changed spiral spacing. Under the weak anisotropy, the spiral spacing and morphology keep stable with the increase of the anisotropic strength. In the case of facet anisotropy, however, the larger anisotropic strength facilitates the spiral growth due to the local interfacial instability caused by increasing the supersaturation for the tip step. As to the effect of deposition, the deposition rate imposes the reaction on the curvature of interface due to the variations of supersaturation and step velocity. The larger rate of deposition enables the shorter spacing for both anisotropic and isotropic spirals. We carry out a convergence study of spiral spacing with respect to the step width to estimate the precision of the phase-field simulation. Results show that the larger deposition rate and the higher anisotropy give rise to the lower convergence of the spiral model. Moreover, we find that the kinetic attachment affects the instinct regime of spiral growth by changing the step spacing and the scaling exponents of spiral spacing versus deposition rate. The anisotropic spiral exhibits the more significant hexagonal structure and the lower value of step velocity by reducing the value of kinetic coefficient. The scaling exponent decreases with anisotropy increasing, but it increases with kinetic effect strengthening. The highly anisotropic energy contributes to weakening the sensitivity of the spiral spacing to the kinetic effect.
      Corresponding author: Chen Chang-Le, chenchl@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301, 51172183, 51402240, 51471134), the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JQ5125), the Doctorate Foundation of Northwestern Polytechnical University, China (Grant No. CX201325), the Fundamental Research Funds for the Central Universities (Grant No. 3102015ZY078), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).
    [1]

    Smereka P 2000 Physica D 138 282

    [2]

    Sorge J B, van Popta A C, Sit J C, Brett M J 2006 Opt. Express 14 10550

    [3]

    Hodgkinson I, Wu Q 2001 Adv. Mater. 13 889

    [4]

    Liu Y, Li L 2011 Nanotechnology 22 3990

    [5]

    Burton W K, Cabrera N, Frank F C 1951 Philos. Trans. R. Soc. London, Ser. A 243 299

    [6]

    Bennema P 1984 J. Cryst. Growth 69 182

    [7]

    Lin E Y, Zhang Y X, Liao Y J, Mo Y J, Jiang S 2014 J. Comput. Mater. Sci. 90 148

    [8]

    Dam B, Rector J H, Huijbregtse J M, Griessen R 1998 Physica C 305 1

    [9]

    Vezian S, Natali F, Semond F, Massies J 2004 Phys. Rev. B 69 125329

    [10]

    Dong X L, Xing H, Sha S, Chen C L, Niu L W, Wang J Y, Jin K X 2015 Sci. China Technol. Sci. 58 753

    [11]

    Kim S H, Dandekar P, Lovette M A, Doherty M F 2014 Cryst. Growth Des. 14 2460

    [12]

    Cuppena H M, van Veenendaala E, van Suchtelena J, van Enckevorta W J P, Vlieg E 2000 J. Cryst. Growth 219 165

    [13]

    Swendsen R H, Kortman P J, Landau D P, Muller-Krumbhaar H 1976 J. Cryst. Growth 35 73

    [14]

    Ratsch C, Smilauer P, Vvedensky D D 1995 Sur. Sci. Lett. 329 L599

    [15]

    Caflisch R E, Gyure M F, Merriman B, Ratsch C 1999 Phys. Rev. E 59 6879

    [16]

    Liu F, Metiu H 1997 Phys. Rev. E 19 2601

    [17]

    Pierre-Louis O 2003 Phys. Rev. E 68 021604

    [18]

    Otto F, Penzler P, Ratz A, Rump T, Voigt A 2004 Nonlinearity 17 477

    [19]

    Rtz A, Voigt A 2004 Appl. Anal. 83 1015

    [20]

    Rtz A, Voigt A 2004 J. Cryst. Growth 266 278

    [21]

    Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X 1999 J. Comput. Phys. 154 468

    [22]

    Karma A, Rappel W J 1996 Phys. Rev. E 53 3017

    [23]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [24]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 73 061604

    [25]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [26]

    Folch R, Plapp M 2003 Phys. Rev. E 68 010602

    [27]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [28]

    Xing H, Wang J Y, Chen C L, Jin K X, Du L F 2014 Chin. Phys. B 23 038104

    [29]

    Xing H, Dong X L, Chen C L, Wang J Y, Du L F, Jin K X 2015 Int. J. Heat. Mass. Tran. 90 911

    [30]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 60201 (in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 60201]

    [31]

    Karma A, Plapp M 1998 Phys. Rev. Lett. 81 4444

    [32]

    Yu Y M, Liu B G, Voigt A 2009 Phys. Rev. B 79 235317

    [33]

    Redinger A, Ricken O, Kuhn P, Rtz A, Voigt A, Krug J, Michely T 2008 Phys. Rev. Lett. 100 035506

    [34]

    Kobayashi R 1993 Physica D 63 410

    [35]

    McFadden G B, Wheeler A A, Braun R J, Coriell S R, Sekerka R F 1993 Phys. Rev. E 48 2016

    [36]

    Fierro F, Goglione R, Paolini M 1998 Math. Mod. Meth. Appl. Sci. 8 573

    [37]

    Eggleston J, McFadden G B, Voorhees P W 2001 Physica D 150 91

    [38]

    Neugebauer J 2001 Phys. Stat. Sol. 227 93

    [39]

    Cabrera N, Coleman R V 1963 The Art and Science of Growing Crystals (New York: John Wiley) p3

    [40]

    van der Eerden J P 1981 J. Cryst. Growth 53 305

  • [1]

    Smereka P 2000 Physica D 138 282

    [2]

    Sorge J B, van Popta A C, Sit J C, Brett M J 2006 Opt. Express 14 10550

    [3]

    Hodgkinson I, Wu Q 2001 Adv. Mater. 13 889

    [4]

    Liu Y, Li L 2011 Nanotechnology 22 3990

    [5]

    Burton W K, Cabrera N, Frank F C 1951 Philos. Trans. R. Soc. London, Ser. A 243 299

    [6]

    Bennema P 1984 J. Cryst. Growth 69 182

    [7]

    Lin E Y, Zhang Y X, Liao Y J, Mo Y J, Jiang S 2014 J. Comput. Mater. Sci. 90 148

    [8]

    Dam B, Rector J H, Huijbregtse J M, Griessen R 1998 Physica C 305 1

    [9]

    Vezian S, Natali F, Semond F, Massies J 2004 Phys. Rev. B 69 125329

    [10]

    Dong X L, Xing H, Sha S, Chen C L, Niu L W, Wang J Y, Jin K X 2015 Sci. China Technol. Sci. 58 753

    [11]

    Kim S H, Dandekar P, Lovette M A, Doherty M F 2014 Cryst. Growth Des. 14 2460

    [12]

    Cuppena H M, van Veenendaala E, van Suchtelena J, van Enckevorta W J P, Vlieg E 2000 J. Cryst. Growth 219 165

    [13]

    Swendsen R H, Kortman P J, Landau D P, Muller-Krumbhaar H 1976 J. Cryst. Growth 35 73

    [14]

    Ratsch C, Smilauer P, Vvedensky D D 1995 Sur. Sci. Lett. 329 L599

    [15]

    Caflisch R E, Gyure M F, Merriman B, Ratsch C 1999 Phys. Rev. E 59 6879

    [16]

    Liu F, Metiu H 1997 Phys. Rev. E 19 2601

    [17]

    Pierre-Louis O 2003 Phys. Rev. E 68 021604

    [18]

    Otto F, Penzler P, Ratz A, Rump T, Voigt A 2004 Nonlinearity 17 477

    [19]

    Rtz A, Voigt A 2004 Appl. Anal. 83 1015

    [20]

    Rtz A, Voigt A 2004 J. Cryst. Growth 266 278

    [21]

    Beckermann C, Diepers H J, Steinbach I, Karma A, Tong X 1999 J. Comput. Phys. 154 468

    [22]

    Karma A, Rappel W J 1996 Phys. Rev. E 53 3017

    [23]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [24]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 73 061604

    [25]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [26]

    Folch R, Plapp M 2003 Phys. Rev. E 68 010602

    [27]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [28]

    Xing H, Wang J Y, Chen C L, Jin K X, Du L F 2014 Chin. Phys. B 23 038104

    [29]

    Xing H, Dong X L, Chen C L, Wang J Y, Du L F, Jin K X 2015 Int. J. Heat. Mass. Tran. 90 911

    [30]

    Duan P P, Xing H, Chen Z, Hao G H, Wang B H, Jin K X 2015 Acta Phys. Sin. 64 60201 (in Chinese) [段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新 2015 物理学报 64 60201]

    [31]

    Karma A, Plapp M 1998 Phys. Rev. Lett. 81 4444

    [32]

    Yu Y M, Liu B G, Voigt A 2009 Phys. Rev. B 79 235317

    [33]

    Redinger A, Ricken O, Kuhn P, Rtz A, Voigt A, Krug J, Michely T 2008 Phys. Rev. Lett. 100 035506

    [34]

    Kobayashi R 1993 Physica D 63 410

    [35]

    McFadden G B, Wheeler A A, Braun R J, Coriell S R, Sekerka R F 1993 Phys. Rev. E 48 2016

    [36]

    Fierro F, Goglione R, Paolini M 1998 Math. Mod. Meth. Appl. Sci. 8 573

    [37]

    Eggleston J, McFadden G B, Voorhees P W 2001 Physica D 150 91

    [38]

    Neugebauer J 2001 Phys. Stat. Sol. 227 93

    [39]

    Cabrera N, Coleman R V 1963 The Art and Science of Growing Crystals (New York: John Wiley) p3

    [40]

    van der Eerden J P 1981 J. Cryst. Growth 53 305

  • [1] Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam. Acta Physica Sinica, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [2] Pan Xiao, Ju Huan-Xin, Feng Xue-Fei, Fan Qi-Tang, Wang Chia-Hsin, Yang Yaw-Wen, Zhu Jun-Fa. Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films. Acta Physica Sinica, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [3] Zhou Xun, Luo Zi-Jiang, Wang Ji-Hong, Guo Xiang, Ding Zhao. Effect of low As pressure annealing on the morphology and reconstruction of GaAs (001). Acta Physica Sinica, 2015, 64(21): 216803. doi: 10.7498/aps.64.216803
    [4] Yu Tian-Yan, Qin Yang, Liu Ding-Quan. Investigation of the crystal and optical properties of ZnS thin films deposited at different temperature. Acta Physica Sinica, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [5] Jing Wei-Xuan, Wang Bing, Niu Ling-Ling, Qi Han, Jiang Zhuang-De, Chen Lu-Jia, Zhou Fan. Relationships between synthesizing parameters, morphology, and contact angles of ZnO nanowire films. Acta Physica Sinica, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [6] Xiong Fei, Yang Jie, Zhang Hui, Chen Gang, Yang Pei-Zhi. Growth evolution of Ge quantum dot modulated by the atom bombardment during ion beam sputtering deposition. Acta Physica Sinica, 2012, 61(21): 218101. doi: 10.7498/aps.61.218101
    [7] Zhang Ling, He Zhi-Bing, Liao Guo, Chen Jia-Jun, Xu Hua, Li Jun. Influence of B doping on structure and properties of Ti Thin Film. Acta Physica Sinica, 2012, 61(18): 186803. doi: 10.7498/aps.61.186803
    [8] Zhang Xue-Gui, Wang Chong, Lu Zhi-Quan, Yang Jie, Li Liang, Yang Yu. Evolution of Ge/Si quantum dots self-assembledgrown by ion beam sputtering. Acta Physica Sinica, 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [9] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [10] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [11] Di Guo-Qing. Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering. Acta Physica Sinica, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [12] Jiang Yang, Luo Yi, Xi Guang-Yi, Wang Lai, Li Hong-Tao, Zhao Wei, Han Yan-Jun. Effect of AlGaN intermediate layer on residual stress control and surface morphology of GaN grown on 6H-SiC substrate by metal organic vapour phase epitaxy. Acta Physica Sinica, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [13] Gu Jian-Feng, Fu Wei-Jia, Liu Ming, Liu Zhi-Wen, Ma Chun-Yu, Zhang Qing-Yu. Highly c-axis textured ZnO thin films grown by electrochemical deposition and their optical properties. Acta Physica Sinica, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [14] The surface mapping and crystal orientation of body-centered cubic thin metal tungsten films of different thickness. Acta Physica Sinica, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [15] Yang Ji-Jun, Xu Ke-Wei. Surface dynamic evolution of Ta film growth in the initial stage. Acta Physica Sinica, 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [16] Sun Cheng-Wei, Liu Zhi-Wen, Qin Fu-Wen, Zhang Qing-Yu, Liu Kun, Wu Shi-Fa. Influences of growth temperature on the crystalline characteristics and optical properties for ZnO films deposited by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [17] Gu Jin-Hua, Zhou Yu-Qin, Zhu Mei-Fang, Li Guo-Hua, Ding Kun, Zhou Bing-Qing, Liu Feng-Zhen, Liu Jin-Long, Zhang Qun-Fang. Study on growth mechanism of low-temperature prepared microcrystalline Si thin f ilms. Acta Physica Sinica, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [18] Meng Yang, Zhang Qing-Yu. Study on the evolution of Au heteroepitaxial islands on Cu(001) by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5804-5813. doi: 10.7498/aps.54.5804
    [19] Wang Yuan, Bai Xuan-Yu, Xu Ke-Wei. Morphological characterization and nanoindentation hardness scatter evaluation for Cu-W thin films based on wavelet transform. Acta Physica Sinica, 2004, 53(7): 2281-2286. doi: 10.7498/aps.53.2281
    [20] LIAO MEI-YONG, QIN FU-GUANG, CHAI CHUN-LIN, LIU ZHI-KAI, YANG SHAO-YAN, YAO ZHEN-YU, WANG ZHAN-GUO. INFLUENCE OF ION ENERGY AND DEPOSITION TEMPERATURE ON THE SURFACE MORPHOLOGY OF CARBON FILMS DEPOSITED BY ION BEAMS. Acta Physica Sinica, 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
Metrics
  • Abstract views:  4995
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2015
  • Accepted Date:  03 December 2015
  • Published Online:  20 January 2016

/

返回文章
返回