Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring new opening-up membrane vesicles of two holes by using the relaxation method

Kong Xiang-Bo Zhang Shao-Guang

Citation:

Exploring new opening-up membrane vesicles of two holes by using the relaxation method

Kong Xiang-Bo, Zhang Shao-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the discovery and study of opening-up lipid vesicles, the theoretical analysis and numerical calculation have aroused increasing interests of researchers. In the previous study, Suezaki and Umeda gave the opening-up vesicles near the spherical vesicles, such as the dish and cup shapes with one hole, and the tube and funnel shapes with two holes. These shapes are found at relatively low values of reduced, relaxed area difference a0. However, what are the stable shapes for high values of a0 is not known. Kang et al. found solutions of opening up dumbbell shapes with one hole. Whether or not there exist dumbbell shapes with two holes, and the phase transformation behavior between them remains unknown. The purpose of this paper is to explore a new kind of two-hole dumbbell shaped lipid vesicles and phase transformations between this kind of vesicle and previously found vesicles. Based on the area-difference-elasticity model, this paper tries to explore new solutions of the Euler-Lagrange equations of the opening-up membrane vesicles which meet the boundary conditions by using the relaxation method. A new branch of solution of dumbbell shapes with two holes is found. The phase transformations of closed dumbbell shapes and opening-up dumbbell shapes with one hole and two holes are studied in detail. To explore whether these shapes could be found in experiments, the energy of the cup, tube, and funnel shaped vesicles are also compared with the opening-up dumbbell shapes. It is found that at high values of a0, all the cup, tube, and funnel shapes will transform into closed spherical vesicles. So the energy of new opening-up dumbbell vesicles can be compared to that of closed spherical vesicles and closed dumbbell vesicles. It is found that the dumbbell shapes with one hole and two holes all have stable regions, implying that it is possible for these open dumbbells to be observed. Since the distance in the functional space is too far between the open dumbbell shapes and spherical vesicles, experimental test is needed to verify whether the dumbbell shapes with two holes will evolve continuously to the closed dumbbell shapes or to the closed spherical vesicles. It has been noticed that for relatively small values of a0, two holes vesicles may exhibit symmetrical tube shapes and asymmetric funnel shapes between which the phase transformation is continuous, because the funnel solutions bifurcate from the tube solutions. In order to check whether there exist asymmetric opening-up dumbbell shapes with two holes and the similar bifurcation behavior, a thorough search is made in the parameter space. So far no asymmetric dumbbell shape with two holes is found.
      Corresponding author: Zhang Shao-Guang, zhangsg@snnu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201302011), and the National Natural Science Foundation of China (Grant No. 10374063).
    [1]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11651

    [2]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11660

    [3]

    Saitoh A, Takiguchi K, Tanaka Y Hotani H 1998 Proc. Natl. Acad. Sci. USA 95 1026

    [4]

    de Gennes P G, Tauppin C 1982 J. Phys. Chem. 86 2294

    [5]

    Bar-Ziv R, Frisch T, Moses E 1995 Phys. Rev. Lett. 75 3481

    [6]

    Zhelev D V, Needham D 1993 Biochim. Biophys. Acta 1147 89

    [7]

    Capovilla R, Guven J, Santiago J A 2002 Phys. Rev. E 66 021607

    [8]

    Tu Z C, Ouyang Z C 2003 Phys. Rev. E 68 061915

    [9]

    Li S L, Zhang S G 2010 Acta Phys. Sin. 59 5202 (in Chinese) [李树玲, 张劭光 2010 物理学报 59 5202]

    [10]

    Umeda T, Suezaki Y 2005 Phys. Rev. E 71 011913

    [11]

    Kang W B, Zhang S G, Wang Y, Mu Y R, Huang C 2011 Sci. China: Phys. Mech. Astron. 54 2243

    [12]

    Huang C, Zhang S G 2013 J. Shaanxi Normal Univ. (Natural Science Edition) 41 0031 (in Chinese) [黄聪, 张劭光 2013 陕西师范大学学报 (自然科学版) 41 0031]

    [13]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [14]

    Miao L, Seifert U, Wortis M, Dobereinert H G 1994 Phys. Rev. E 49 5389

    [15]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [16]

    Tu Z C 2010 J. Chem. Phys. 132 084111

    [17]

    Press W H, Teukolsky S A, Vetterling S A, Flannery B P 1996 Numerical Recipes in Fortran (Second Edition) (U.K.: Cambridge University Press) pp1316-1320

    [18]

    He G Y, Gao Y L 2002 Visual Fortran Commonly Used Numerical Algorithms (First Edition) (Beijing: Science Press) pp657-678 (in Chinese) [何光渝, 高永利 2002 Visual Fortran 常用数值算法 (第一版) (北京: 科学出版社) 第 657-678 页]

  • [1]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11651

    [2]

    Lieber M R, Steck T L 1982 J. Biol. Chem. 257 11660

    [3]

    Saitoh A, Takiguchi K, Tanaka Y Hotani H 1998 Proc. Natl. Acad. Sci. USA 95 1026

    [4]

    de Gennes P G, Tauppin C 1982 J. Phys. Chem. 86 2294

    [5]

    Bar-Ziv R, Frisch T, Moses E 1995 Phys. Rev. Lett. 75 3481

    [6]

    Zhelev D V, Needham D 1993 Biochim. Biophys. Acta 1147 89

    [7]

    Capovilla R, Guven J, Santiago J A 2002 Phys. Rev. E 66 021607

    [8]

    Tu Z C, Ouyang Z C 2003 Phys. Rev. E 68 061915

    [9]

    Li S L, Zhang S G 2010 Acta Phys. Sin. 59 5202 (in Chinese) [李树玲, 张劭光 2010 物理学报 59 5202]

    [10]

    Umeda T, Suezaki Y 2005 Phys. Rev. E 71 011913

    [11]

    Kang W B, Zhang S G, Wang Y, Mu Y R, Huang C 2011 Sci. China: Phys. Mech. Astron. 54 2243

    [12]

    Huang C, Zhang S G 2013 J. Shaanxi Normal Univ. (Natural Science Edition) 41 0031 (in Chinese) [黄聪, 张劭光 2013 陕西师范大学学报 (自然科学版) 41 0031]

    [13]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [14]

    Miao L, Seifert U, Wortis M, Dobereinert H G 1994 Phys. Rev. E 49 5389

    [15]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [16]

    Tu Z C 2010 J. Chem. Phys. 132 084111

    [17]

    Press W H, Teukolsky S A, Vetterling S A, Flannery B P 1996 Numerical Recipes in Fortran (Second Edition) (U.K.: Cambridge University Press) pp1316-1320

    [18]

    He G Y, Gao Y L 2002 Visual Fortran Commonly Used Numerical Algorithms (First Edition) (Beijing: Science Press) pp657-678 (in Chinese) [何光渝, 高永利 2002 Visual Fortran 常用数值算法 (第一版) (北京: 科学出版社) 第 657-678 页]

  • [1] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] Cheng Gang, Cao Yuan, Liu Kun, Cao Ya-Nan, Chen Jia-Jin, Gao Xiao-Ming. Numerical calculation and optimization of photoacoustic cell for photoacoustic spectrometer. Acta Physica Sinica, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [3] Liang Yue-Feng, Zhang Shao-Guang. Shape transformations of opening-up vesicles with one hole. Acta Physica Sinica, 2017, 66(15): 158701. doi: 10.7498/aps.66.158701
    [4] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [5] Dong Hui-Jie, Wang Xin-Yu, Li Chang-Yong, Jia Suo-Tang. Stark structure of atomic gallium. Acta Physica Sinica, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [6] Song Dan, Fan Xiao-Ping, Liu Zhong-Li. An immune memory optimization algorithm based on the non-genetic information. Acta Physica Sinica, 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [7] Yan Bai-Ping, Zhang Cheng-Ming, Li Li-Yi, Tang Zhi-Feng, Lü Fu-Zai, Yang Ke-Ji. Method of identifying consitutive parameter in Tb0.3Dy0.7Fe2 Alloy. Acta Physica Sinica, 2015, 64(2): 027501. doi: 10.7498/aps.64.027501
    [8] Yang Fang-Yan, Hu Ming, Yao Shang-Ping. Algrithm for detecting homoclinic orbits of time-continuous dynamical system and its application. Acta Physica Sinica, 2013, 62(10): 100501. doi: 10.7498/aps.62.100501
    [9] Ruan Peng, Xie Ji-Jiang, Pan Qi-Kun, Zhang Lai-Ming, Guo Jin. Dynamical model of non-chain pulsed DF laser. Acta Physica Sinica, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [10] Li Jie, Zhu Jing-Ping. Fabrication tolerances in four analytical designs of geodesic lenses. Acta Physica Sinica, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [11] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [12] Zhao Xing-Yu, Wang Li-Na, Fan Xiao-Hui, Zhang Li-Li, Wei Lai, Zhang Jin-Lu, Huang Yi-Neng. Computer simulation of the string relaxation modes of the molecule-string model for glass transition. Acta Physica Sinica, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [13] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [14] Hua Jin-Rong, Li Li, Xiang Xia, Zu Xiao-Tao. Three-dimensional numerical simulation of light field modulation in the vicinity of inclusions in silica subsurface. Acta Physica Sinica, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [15] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [16] Li Shu-Ling, Zhang Shao-Guang. An analytical solution for opening-up vesicle based on the circular biconcave shape. Acta Physica Sinica, 2010, 59(8): 5202-5208. doi: 10.7498/aps.59.5202
    [17] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [18] Song Fa-Lun, Zhang Yong-Hui, Xiang Fei, Chang An-Bi. Ionization of background gas by an intense relativistic electron beam. Acta Physica Sinica, 2008, 57(3): 1807-1812. doi: 10.7498/aps.57.1807
    [19] Ma Zai-Ru, Feng Guo-Ying, Chen Jian-Guo, Zhu Qi-Hua, Zeng Xiao-Ming, Liu Wen-Bing, Zhou Shou-Huan. Research on the formation of narrow bandwidth long flat-top pulse via coherent addition of ultra-short pulses. Acta Physica Sinica, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [20] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
Metrics
  • Abstract views:  5052
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2015
  • Accepted Date:  31 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回