Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An ultra-wideband absorber based on graphene

Jiang Yan-Nan Wang Yang Ge De-Biao Li Si-Min Cao Wei-Ping Gao Xi Yu Xin-Hua

Citation:

An ultra-wideband absorber based on graphene

Jiang Yan-Nan, Wang Yang, Ge De-Biao, Li Si-Min, Cao Wei-Ping, Gao Xi, Yu Xin-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Stealth technology is of great importance and significance in reducing the radar cross section and improving the survivability of the target aircraft. Absorber is one of the most important structures in stealth technology. However, the present investigations of absorbers mainly focus on the narrow band or multi-band. To extend the operation bandwidth, a graphene-based absorber structure is proposed in this paper. The proposed absorber has a periodic structure whose unit cell consists of a square and a circular graphene-based ring. The surface impedance of the periodic structure can be optimized to match the impedance of the free space in a very wide band by adjusting the electrostatic bias voltage. Then the operation band is significantly extended. By using the commercial software, CST Microwave Studio 2014, the performance of the proposed absorber is studied. The simulated results show that the proposed absorber can absorb electromagnetic (EM) waves in an ultra-wideband from 2.1 to 9.0 GHz, with an absorbing rate of up to 90%. Moreover, the proposed absorber is insensitive to the polarization of the incident wave due to the symmetry of the structure. We also find that the absorber can be tuned to work at any frequency in a range from 2.0 to 9.0 GHz for a fixed geometrical parameter. The equivalent circuit model (ECM) approach and interference theory (INF) are employed to investigate the physical mechanism of the proposed absorber. According to the ECM, we analyze the resonant characteristics of the square and circular graphene rings. Owing to the existence of two different graphene rings, two resonant frequencies are detected. By optimizing the structure parameters of the graphene rings, the two resonant frequencies are brought closer, resulting in the increase of the operation band. On the other hand, the real part of the input impedance of the equivalent circuit reaches up to about 300 Ω and the imaginary part is close to 0 Ω, which provides good matching to the free space, leading to high absorption rate. According to the interference theory, the amplitudes and phases of the direct reflection and the multiple reflections of EM waves are studied. It is found that the destructive interference between the direct reflection and multiple reflection makes the absorber have high performance in an ultra-wideband. The results obtained from ECM and INF are in good agreement with the simulation ones.
      Corresponding author: Jiang Yan-Nan, ynjiang@guet.edu.cn.
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 61361005, 61461016, 61161002, 61561013), the Natural Science Foundation of Guangxi, China(Grant Nos. 2014GXNSFAA118283, 2014GXNSFAA118366, 2015GXNSFAA139305), the Program for Innovative Research Team of Guilin University of Electronic Technology (IRTGUET), and the Director Fund of Key Laboratory of Cognitive Radio and Information Processing (Guilin University of Electronic Technology), Ministry of Education.
    [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas. Propag. 36 1443

    [2]

    Toit L J D 1994 IEEE Antennas. Propag. Mag. 36 17

    [3]

    Landy N, Sajuyigbe S, Mock J 2008 Phys. Rev. Lett. 100 207402

    [4]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Zhai X, Li X F 2014 Opt. Commun. 325 78

    [5]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [6]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [8]

    Agarwal S, Prajapati Y K, Singh V, Saini J P 2015 Opt. Commun. 356 565

    [9]

    Geim A K, Novoselov K S 2007 Nature. Mater. 63 183

    [10]

    Geim A K 2009 Science 324 1530

    [11]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [12]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [13]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408

    [14]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [15]

    Vakil A, Engheta N 2011 Science 332 1291

    [16]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas. Propag. 61 4176

    [17]

    Avitzour Y, Yaroslav A, Urzhumov, Shvels G 2009 Phys. Rev. B 79 045131

    [18]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [19]

    Langley R J Parker E A 1982 Electron. Lett. 18 294

    [20]

    Langley R J Parker E A 1983 Electron. Lett. 19 675

    [21]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas. Propag. 58 1551

    [22]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas Propag. Society Int. Symp Charleston, June, 2009 p781

    [23]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antennas. Propag. 56 1624

    [24]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas. Propag. 63 3522

    [25]

    Chen H T, Zhou J F, John F O, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901

    [26]

    Chen H T 2012 Opt. Express 20 7165

  • [1]

    Fante R L, McCormack M T 1988 IEEE Trans. Antennas. Propag. 36 1443

    [2]

    Toit L J D 1994 IEEE Antennas. Propag. Mag. 36 17

    [3]

    Landy N, Sajuyigbe S, Mock J 2008 Phys. Rev. Lett. 100 207402

    [4]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Zhai X, Li X F 2014 Opt. Commun. 325 78

    [5]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [6]

    Gu C, Qu S B, Pei Z B, Xu Z, Ma H, Lin B Q, Bai P, Peng W D 2011 Acta Phys. Sin. 60 107801 (in Chinese) [顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东 2011 物理学报 60 107801]

    [7]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [8]

    Agarwal S, Prajapati Y K, Singh V, Saini J P 2015 Opt. Commun. 356 565

    [9]

    Geim A K, Novoselov K S 2007 Nature. Mater. 63 183

    [10]

    Geim A K 2009 Science 324 1530

    [11]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [12]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [13]

    Fallahi A, Perruisseau-Carrier J 2012 Phys. Rev. B 86 195408

    [14]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [15]

    Vakil A, Engheta N 2011 Science 332 1291

    [16]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas. Propag. 61 4176

    [17]

    Avitzour Y, Yaroslav A, Urzhumov, Shvels G 2009 Phys. Rev. B 79 045131

    [18]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2014 Opt. Express 22 22743

    [19]

    Langley R J Parker E A 1982 Electron. Lett. 18 294

    [20]

    Langley R J Parker E A 1983 Electron. Lett. 19 675

    [21]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas. Propag. 58 1551

    [22]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas Propag. Society Int. Symp Charleston, June, 2009 p781

    [23]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Raisanen A V, Tretyakov S A 2008 IEEE Trans. Antennas. Propag. 56 1624

    [24]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas. Propag. 63 3522

    [25]

    Chen H T, Zhou J F, John F O, Frank C, Abul K A, Antoinette J T 2010 Phys. Rev. Lett. 105 073901

    [26]

    Chen H T 2012 Opt. Express 20 7165

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun. Research progress of electromechanical graphene resonant sensors. Acta Physica Sinica, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [4] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [5] Pu Xiao-Qing, Wu Jing, Guo Qiang, Cai Jian-Zhen. Theoretical study on ohmic contact between graphene and metal electrode. Acta Physica Sinica, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [6] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] Mo Jun, Feng Guo-Ying, Yang Mo-Chou, Liao Yu, Zhou Hao, Zhou Shou-Huan1\2Graphene-based broadband all-optical spatial modulator. Acta Physica Sinica, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [8] Lou Guo-Feng, Yu Xin-Jie, Lu Shi-Hua. Equivalent circuit model for plate-type magnetoelectric laminate composite considering an interface coupling factor. Acta Physica Sinica, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [9] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [10] Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao. Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber. Acta Physica Sinica, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [11] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [12] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [13] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [14] Zhang Hui-Yun, Huang Xiao-Yan, Chen Qi, Ding Chun-Feng, Li Tong-Tong, Lü Huan-Huan, Xu Shi-Lin, Zhang Xiao, Zhang Yu-Ping, Yao Jian-Quan. Tunable terahertz absorber based on complementary graphene meta-surface. Acta Physica Sinica, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] Fu Kuan, Xu Zhong-Wei, Li Hai-Qing, Peng Jing-Gang, Dai Neng-Li, Li Jin-Yan. Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb3+-doped fiber laser with all-normal dispersion cavity. Acta Physica Sinica, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [16] Feng Qiu-Yan, Yao Bai-Cheng, Zhou Jin-Hao, Xia Han-Ding, Fan Meng-Qiu, Zhang Li, Wu Yu, Rao Yun-Jiang. Four-wave-mixing generated by femto-second laser pumping based on graphene coated microfiber structure. Acta Physica Sinica, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [17] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [18] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [19] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [20] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
Metrics
  • Abstract views:  7904
  • PDF Downloads:  776
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2015
  • Accepted Date:  13 November 2015
  • Published Online:  05 March 2016

/

返回文章
返回