Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of point defect concentrations on elastic properties of off-stoichiometric L12-type A13Sc

Zhang Chao-Min Jiang Yong Yin Deng-Feng Tao Hui-Jin Sun Shun-Ping Yao Jian-Gang

Citation:

Effects of point defect concentrations on elastic properties of off-stoichiometric L12-type A13Sc

Zhang Chao-Min, Jiang Yong, Yin Deng-Feng, Tao Hui-Jin, Sun Shun-Ping, Yao Jian-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Elastic properties and phase stabilities of L12-A13Sc precipitate phase in Al-Sc alloys have been topics of experimental and theoretical research over the past years. However, these properties of off-stoichiometric L12-A13Sc have not been investigated. Firstly, in combination with Wagner-Schottky model, the first-principles total energy calculations based on density functional theory are performed to study point defect concentrations of intermetallic L12-A13Sc each as a function of temperature and alloy composition. We calculate the point defect formation enthalpies and plot the point defect density curves of stoichiometric and off-stoichiometric L12-A13Sc at 1000 K. The results show that within the whole temperature range (300-1200 K), Al and Sc vacancies dominate on stoichiometric L12-A13Sc but with low concentrations (~10-6 even at 1200 K); on the Al-rich side of off-stoichiometric L12-A13Sc, the Al anti-site and the Sc vacancy concentrations dominate, and their concentrations are comparable, however, on Sc-rich side of off-stoichiometric L12-A13Sc, the Sc anti-site defect dominates. Furthermore, the lattice constants and the elastic constants of stoichiometric and off-stoichiometric L12-A13Sc are calculated, and it is worth noting that 222 supercell models with a point defect are used for off-stoichiometric L12-A13Sc in the calculation. Then employing calculated elastic constants, the values of Youngs modulus, shear modulus, bulk modulus, anisotropic index, G/B ratio, Cauchy pressure, and Poisson ratio of stoichiometric and off-stoichiometric L12-A13Sc are computed. And lastly, combining these data with point defect concentrations of off-stoichiometric L12-A13Sc at 1000 K, the comprehensive effects of four point defects on elastic properties of L12-A13Sc are evaluated. The four point defects coexist in L12-A13Sc as we know from the calculations of equilibrium point defect density. The conclusions are as follows. 1) The point defects can cause off-stoichiometric L12-A13Sc lattice distortion. On the Sc-rich side, lattice constant appears to be an increasing tendency, from 4.105 to the biggest value of ~4.13 (~0.5% growth), while on the Al-rich side, it shows an opposite trend, from 4.105 to the smallest value of ~4.10 (~0.24% fall). Although there is the lattice distortion in off-stoichiometric L12-A13Sc, off-stoichiometric L12-A13Sc can still keep stable crystal structure for the value of xAl in a range of 0.72-0.78. 2) The point defects also affect elastic constants of off-stoichiometric L12-A13Sc. Specifically, on the Sc-rich side, elastic constant c11 decreases with the increase of deviation degree of stoichiometric ratio, and the maximal reduction is ~9% at xAl = 0.72, while elastic constants c12 and c44 show the opposite variation trends, and the maximal increase is ~8% at xAl = 0.72. On the Al-rich side, there are little changes for elastic constants c11, c12 and c44. 3) The point defects obviously increase the elastic anisotropy of off-stoichiometric L12-A13Sc, and especially on the Sc-rich side, the notable increase is found, which jumps from 1.610-6 to 0.04. 4) The values of Youngs modulus, shear modulus, and bulk modulus of off-stoichiometric L12-A13Sc decrease due to point defects, with the maximal reduction being 3%-4%. These elastic modules fall first rapidly and then slowly on the Sc-rich side, while they present approximately a linear downward trend on the Al-rich side. In addition, weak influences are exerted on brittleness and toughness of off-stoichiometric L12-A13Sc by the point defects, compared with the other elastic effects mentioned above. In summary, in the scope of xAl = 0.72-0.78, the point defects can not only reduce Youngs modulus, shear modulus, and bulk modulus of off-stoichiometric L12-A13Sc, but also increase the anisotropies of the elastic properties of off-stoichiometric L12-A13Sc. However, the point defects have weak influences on the brittleness and toughness of off-stoichiometric L12-A13Sc.
      Corresponding author: Jiang Yong, yjiang@csu.edu.cn;ydfchh@mail.csu.edu.cn ; Yin Deng-Feng, yjiang@csu.edu.cn;ydfchh@mail.csu.edu.cn
    • Funds: Project supported by the Science and Technology Development Plan of Shandong Province, China (Grant No. 2014GGX102006) and the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J14LJ51).
    [1]

    Karnesky R A, Dunand D C, Seidmand N 2009 Acta Mater. 57 4022

    [2]

    Krug M E, Dunand D C, Seidman D N 2011 Acta Mater. 59 1700

    [3]

    Chen Q, Pan Q L, Wang Y, Peng H, Zhang Z Y, Yin Z M 2012 Trans. Nonferrous Met. Soc. China 22 1555 (in Chinese) [陈琴, 潘清林, 王迎, 彭虹, 张志野, 尹志民 2012 中国有色金属学报 22 1555]

    [4]

    Dai X Y, Xia C Q, Long C G, Kou L L 2011 Rare Metal Mat. Eng. 40 265 (in Chinese) [戴晓元, 夏长清, 龙春光, 寇莉莉 2011 稀有金属材料与工程 40 265]

    [5]

    Røyset J, Ryum N 2005 Int. Mater. Rev. 50 19

    [6]

    Li X P, Sun S P, Yu Y, Wang H J, Jiang Y, Yi D Q 2015 Chin. Phys. B 24 120502

    [7]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 物理学报 64 236102]

    [8]

    Fu C L 1990 J. Mater. Res. 5 971

    [9]

    Tao X M 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese) [陶小马 2008 博士学位论文 (长沙: 中南大学)]

    [10]

    Wang N, Tang B Y 2009 Acta Phys. Sin. 58 S230 (in Chinese) [王娜, 唐壁玉 2009 物理学报 58 S230]

    [11]

    Zhang X D, Wang S Q 2013 Acta Metall. Sin. 49 501 (in Chinese) [张旭东, 王绍青 2013 金属学报 49 501]

    [12]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013 Physica B 427 85

    [13]

    Duan Y H, Sun Y, Peng M J, Zhou S G 2014 J. Alloys Compd. 585 587

    [14]

    Chen D, Chen Z, Wu Y, Wang M L, Ma N H, Wang H W 2014 Comput. Mater. Sci. 91 165

    [15]

    Woodward C, Asta M, Kresse G, Hafner J 2001 Phys. Rev. B 63 094103

    [16]

    Sun S P, Li X P, Lei W N, Wang H J, Wang X C, Jiang H F, Li R X, Jiang Y, Yi D Q 2013 Trans. Nonferrous Met. Soc. China 23 2147 (in Chinese) [孙顺平, 李小平, 雷卫宁, 王洪金, 汪贤才, 江海锋, 李仁兴, 江 勇, 易丹青 2013 中国有色金属学报 23 2147]

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K M, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Wagner C, Schottky W 1930 Z. Phys. Chem. B 11 163

    [22]

    Sun S P, Li X P, Yu Y, Lu Y L, Zang B, Yi D Q, Jiang Y 2013 Trans. Nonferrous Met. Soc. China 23 370 (in Chinese) [孙顺平, 李小平, 于赟, 卢雅琳, 臧冰, 易丹青, 江勇 2013 中国有色金属学报 23 370]

    [23]

    Asta M, Ozolins V 2001 Phys. Rev. B 64 094104

    [24]

    Asia M, Foiles S M, Quong A A 1998 Phys. Rev. B 57 11265

    [25]

    Sun S P, Li X P, Lu Y L, Li Y, Huang D Y, Yi D Q 2013 Rare Metal Mat. Eng. 42 1478 (in Chinese) [孙顺平, 李小平, 卢雅琳, 李 勇, 黄道远, 易丹青 2013 稀有金属材料与工程 42 1478]

    [26]

    Cacciamani G, Riani P, Borzone G, Parodi N, Saccone A, Ferro R, Pisch A, Schmid-Fetzer R 1999 Intermetallics 7 101

    [27]

    Meyer B, Fähnle M 1999 Phys. Rev. B 59 6072

    [28]

    Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A, Johansson B 2000 Phys. Rev. B 61 6003

    [29]

    Hu Q M, Yang R, Hao Y L, Xu D S, Li D 2004 Phys. Rev. Lett. 92 185505

    [30]

    Jiang C, Chen L Q, Liu Z K 2006 Intermetallics 14 248

    [31]

    Jiang C, Sordelet D J, Gleeson B 2006 Acta Mater. 54 1147

    [32]

    Jiang C 2007 Acta Mater. 55 1599

    [33]

    Jiang C 2008 Acta Mater. 56 6224

    [34]

    Foata-Prestavoine M, Robert G, Nadal M H, Bernard S 2007 Phys. Rev. B 76 104104

    [35]

    Hyland R W, Stiffler J R C 1991 Scripta. Metall. Mater. 25 473

    [36]

    Mao Z, Chen W, Seidman D N, Wolverton C 2011 Acta Mater. 59 3012

    [37]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [38]

    Jhi S H, Ihm J, Louie G S 1999 Nature 399 132

    [39]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [40]

    Pugh S F 1954 Philos. Mag. 45 823

    [41]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [42]

    Wang R N, Tang B Y, Peng L M, Ding W J 2012 Comput. Mater. Sci. 59 87

  • [1]

    Karnesky R A, Dunand D C, Seidmand N 2009 Acta Mater. 57 4022

    [2]

    Krug M E, Dunand D C, Seidman D N 2011 Acta Mater. 59 1700

    [3]

    Chen Q, Pan Q L, Wang Y, Peng H, Zhang Z Y, Yin Z M 2012 Trans. Nonferrous Met. Soc. China 22 1555 (in Chinese) [陈琴, 潘清林, 王迎, 彭虹, 张志野, 尹志民 2012 中国有色金属学报 22 1555]

    [4]

    Dai X Y, Xia C Q, Long C G, Kou L L 2011 Rare Metal Mat. Eng. 40 265 (in Chinese) [戴晓元, 夏长清, 龙春光, 寇莉莉 2011 稀有金属材料与工程 40 265]

    [5]

    Røyset J, Ryum N 2005 Int. Mater. Rev. 50 19

    [6]

    Li X P, Sun S P, Yu Y, Wang H J, Jiang Y, Yi D Q 2015 Chin. Phys. B 24 120502

    [7]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H 2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 物理学报 64 236102]

    [8]

    Fu C L 1990 J. Mater. Res. 5 971

    [9]

    Tao X M 2008 Ph. D. Dissertation (Changsha: Central South University) (in Chinese) [陶小马 2008 博士学位论文 (长沙: 中南大学)]

    [10]

    Wang N, Tang B Y 2009 Acta Phys. Sin. 58 S230 (in Chinese) [王娜, 唐壁玉 2009 物理学报 58 S230]

    [11]

    Zhang X D, Wang S Q 2013 Acta Metall. Sin. 49 501 (in Chinese) [张旭东, 王绍青 2013 金属学报 49 501]

    [12]

    Hu W C, Liu Y, Li D J, Zeng X Q, Xu C S 2013 Physica B 427 85

    [13]

    Duan Y H, Sun Y, Peng M J, Zhou S G 2014 J. Alloys Compd. 585 587

    [14]

    Chen D, Chen Z, Wu Y, Wang M L, Ma N H, Wang H W 2014 Comput. Mater. Sci. 91 165

    [15]

    Woodward C, Asta M, Kresse G, Hafner J 2001 Phys. Rev. B 63 094103

    [16]

    Sun S P, Li X P, Lei W N, Wang H J, Wang X C, Jiang H F, Li R X, Jiang Y, Yi D Q 2013 Trans. Nonferrous Met. Soc. China 23 2147 (in Chinese) [孙顺平, 李小平, 雷卫宁, 王洪金, 汪贤才, 江海锋, 李仁兴, 江 勇, 易丹青 2013 中国有色金属学报 23 2147]

    [17]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [18]

    Perdew J P, Burke K M, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [21]

    Wagner C, Schottky W 1930 Z. Phys. Chem. B 11 163

    [22]

    Sun S P, Li X P, Yu Y, Lu Y L, Zang B, Yi D Q, Jiang Y 2013 Trans. Nonferrous Met. Soc. China 23 370 (in Chinese) [孙顺平, 李小平, 于赟, 卢雅琳, 臧冰, 易丹青, 江勇 2013 中国有色金属学报 23 370]

    [23]

    Asta M, Ozolins V 2001 Phys. Rev. B 64 094104

    [24]

    Asia M, Foiles S M, Quong A A 1998 Phys. Rev. B 57 11265

    [25]

    Sun S P, Li X P, Lu Y L, Li Y, Huang D Y, Yi D Q 2013 Rare Metal Mat. Eng. 42 1478 (in Chinese) [孙顺平, 李小平, 卢雅琳, 李 勇, 黄道远, 易丹青 2013 稀有金属材料与工程 42 1478]

    [26]

    Cacciamani G, Riani P, Borzone G, Parodi N, Saccone A, Ferro R, Pisch A, Schmid-Fetzer R 1999 Intermetallics 7 101

    [27]

    Meyer B, Fähnle M 1999 Phys. Rev. B 59 6072

    [28]

    Korzhavyi P A, Ruban A V, Lozovoi A Y, Vekilov Y K, Abrikosov I A, Johansson B 2000 Phys. Rev. B 61 6003

    [29]

    Hu Q M, Yang R, Hao Y L, Xu D S, Li D 2004 Phys. Rev. Lett. 92 185505

    [30]

    Jiang C, Chen L Q, Liu Z K 2006 Intermetallics 14 248

    [31]

    Jiang C, Sordelet D J, Gleeson B 2006 Acta Mater. 54 1147

    [32]

    Jiang C 2007 Acta Mater. 55 1599

    [33]

    Jiang C 2008 Acta Mater. 56 6224

    [34]

    Foata-Prestavoine M, Robert G, Nadal M H, Bernard S 2007 Phys. Rev. B 76 104104

    [35]

    Hyland R W, Stiffler J R C 1991 Scripta. Metall. Mater. 25 473

    [36]

    Mao Z, Chen W, Seidman D N, Wolverton C 2011 Acta Mater. 59 3012

    [37]

    Hill R 1952 Proc. Phys. Soc. A 65 349

    [38]

    Jhi S H, Ihm J, Louie G S 1999 Nature 399 132

    [39]

    Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

    [40]

    Pugh S F 1954 Philos. Mag. 45 823

    [41]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345

    [42]

    Wang R N, Tang B Y, Peng L M, Ding W J 2012 Comput. Mater. Sci. 59 87

  • [1] Zhang Bo-Kai. Microscopic theory for elastic modulus of colloidal polymers: Effect of bond length. Acta Physica Sinica, 2021, 70(12): 126401. doi: 10.7498/aps.70.20210128
    [2] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] Jia Xiao-Fang, Huo Qing-Yu, Zhao Chun-Wang. Effect of Mo doping concentration on the physical properties of ZnO studied by first principles. Acta Physica Sinica, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [4] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Shao Dong-Yuan, Hui Qun, Li Xiao, Chen Jing-Jing, Li Chun-Mei, Cheng Nan-Pu. First-principles study on the elastic and thermal properties of Ca0.5Sr0.5TiO3. Acta Physica Sinica, 2015, 64(20): 207102. doi: 10.7498/aps.64.207102
    [7] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [8] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [9] Zhang Zheng-Gang, Ta De-An. Study of bone fatigue evaluation with ultrasonic guide waves based on elastic modulus. Acta Physica Sinica, 2012, 61(13): 134304. doi: 10.7498/aps.61.134304
    [10] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [11] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [12] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effects of high Al doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [13] Fan Kai-Min, Yang Li, Peng Shu-Ming, Long Xing-Gui, Wu Zhong-Cheng, Zu Xiao-Tao. First-principles calculation for elastic constantsof α-ScDx(D=H, He). Acta Physica Sinica, 2011, 60(7): 076201. doi: 10.7498/aps.60.076201
    [14] He Xu, He Lin, Tang Ming-Jie, Xu Ming. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: A first principles investigation. Acta Physica Sinica, 2011, 60(2): 026102. doi: 10.7498/aps.60.026102
    [15] Hou Qing-Yu, Zao Chun-Wang, Li Ji-Jun, Wang Gang. Frist principles study of effect of high Al doping concentrationof p-type ZnO on electric conductivity performance. Acta Physica Sinica, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [16] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [17] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [18] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun. First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO. Acta Physica Sinica, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [19] Wang Na, Tang Bi-Yu. Structural,elastic and electronic properties of L12 aluminum phases from first principles calculation. Acta Physica Sinica, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [20] Yu Xiao, Luo Xiao-Guang, Chen Gui-Feng, Shen Jun, Li Yang-Xian. First principle calculation of structural, elastic and electronic properties of XHfO3(X=Ba, Sr). Acta Physica Sinica, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
Metrics
  • Abstract views:  5599
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2015
  • Accepted Date:  22 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回