Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculation of the photoelectron angular distribution of neon

Ma Kun Xie Lu-You Zhang Deng-Hong Dong Chen-Zhong Qu Yi-Zhi

Citation:

Theoretical calculation of the photoelectron angular distribution of neon

Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The general formula of the angular distribution of photoelectron is derived by using the density matrix theory and Racah algebra method. For comparing with the experimental data, the general formula in this paper is matched to the parametric formula and the non-dipole parameters of the photoelectron angular distribution associated with the terms of the second order for both unpolarized and polarized incident light are given explicitly. From the formula of these parameters we can see that the contribution to the non-dipole parameter is from the interference between dipole amplitude and multipole amplitude. And then, the relativistic calculation program for photoelectron angular distribution is further developed with the help of the program packages GRASP2K and RATIP which are based on the multi-configuration Dirac-Fock method. By using this program, the dipole and non-dipole angular-distribution parameters for neon 2s and 2p photoelectrons are calculated concretely. The good agreement between the results of this paper and the available theoretical data is obtained in a 50-5000 eV photoelectron-energy range studied. On this basis, the angular photoelectron distributions for neon 2s and 2p are calculated with and without considering the second non-dipole terms at the photoelectron energy E=600 eV and E=5000 eV, respectively. Special attention is paid to the effects of the polarization property of incident light and the non-dipole terms of photo-electron interaction on the angular distribution of photoelectrons. The results show that 1) the dipole and non-dipole parameters of the photoelectron angular distribution are sensitive to the ionized electron orbital, it can bring out considerable diversities among the photoelectron angular distributions of the different shells; 2) non-dipole effects make the photoelectron forward distribution in the direction of incident light, the polarization property of incident light will strengthen the asymmetric distribution of photoelectrons.
      Corresponding author: Dong Chen-Zhong, dongcz@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274254, U1332206, U1331122, 11464042, U1330117), the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301), the Natural Science Research Project of the Higher Education Institutions of Anhui Province, China (Grant No. KJHS2015B01), and the Natural Science Research Project of Huangshan University, China (Grant No. 2016xskq001).
    [1]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [2]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [3]

    Sang C C, Ding X B, Dong C Z 2008 Chin. Phys. Lett. 25 3624

    [4]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [5]

    Cooper J, Zare R N 1968 J. Chem. Phys. 48 942

    [6]

    Dill D 1973 Phys. Rev. A 7 1976

    [7]

    Walker T E H, Waber J T 1973 J. Phys. B 6 1165

    [8]

    Chapman F M, Lohr L L 1974 J. Am. Chem. Soc. 96 4731

    [9]

    Wuilleumier F, Krause M 1974 Phys. Rev. A 10 242

    [10]

    Johnson W R, Radojević V, Deshmukh P, Cheng K T 1982 Phys. Rev. A 25 337

    [11]

    Krssig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [12]

    Jung M, Krssig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [13]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [14]

    Dias E W B, Chakraborty H S, Deshmukh P C, Hemmers O, Glans P, Hansen D L, Wang H, Whitfield S B, Lindle D W, Wehlitz R, Levin J C, Sellin I A, Perera R C C 1997 Phys. Rev. Lett. 78 4553

    [15]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [16]

    Holste K, Borovik A A, Buhr T, Ricz S, Kvr , Bernhardt D, Schippers S, Varga D, Mller A 2014 J. Phys. Confer. Ser. 488 022041

    [17]

    Amusia M Y, Baltenkov A S, Chernysheva L V, Felfli Z, Msezane A Z 2001 Phys. Rev. A 63 052506

    [18]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [19]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [20]

    Fritzsche S {2002 Phys. Scripta T100 37

    [21]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York: Kluwer Academic/Plenum) pp45-97

    [22]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York: Wiley) pp32-42

    [23]

    Derevianko A, Johnson W R, Cheng K T 1999 At. Data Nucl. Data Tables 73 153

    [24]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [25]

    Jnsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [27]

    Nefedov V I, Yarzhemsky V G, Nefedova I S, Trzhaskovskaya M B, Band I M 2000 J. Electron Spectrosc. Relat. Phenom. 107 123

  • [1]

    Ma K, Dong C Z, Xie L Y, Qu Y Z 2014 Chin. Phys. Lett. 31 103201

    [2]

    Ma K, Dong C Z, Xie L Y, Ding X B, Qu Y Z 2014 Chin. Phys. Lett. 31 053201

    [3]

    Sang C C, Ding X B, Dong C Z 2008 Chin. Phys. Lett. 25 3624

    [4]

    Guillemin R, Hemmers O, Lindle D W, Manson S T 2006 Radiat. Phys. Chem. 75 2258

    [5]

    Cooper J, Zare R N 1968 J. Chem. Phys. 48 942

    [6]

    Dill D 1973 Phys. Rev. A 7 1976

    [7]

    Walker T E H, Waber J T 1973 J. Phys. B 6 1165

    [8]

    Chapman F M, Lohr L L 1974 J. Am. Chem. Soc. 96 4731

    [9]

    Wuilleumier F, Krause M 1974 Phys. Rev. A 10 242

    [10]

    Johnson W R, Radojević V, Deshmukh P, Cheng K T 1982 Phys. Rev. A 25 337

    [11]

    Krssig B, Jung M, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1995 Phys. Rev. Lett. 75 4736

    [12]

    Jung M, Krssig B, Gemmell D S, Kanter E P, LeBrun T, Southworth S H, Young L 1996 Phys. Rev. A 54 2127

    [13]

    Hemmers O, Fisher G, Glans P, Hansen D L, Wang H, Whitfield S B, Wehlitz R, Levin J C, Sellin I A, Perera R C C, Dias E W B, Chakraborty H S, Deshmukh P C, Manson S T, Lindle D W 1997 J. Phys. B 30 L727

    [14]

    Dias E W B, Chakraborty H S, Deshmukh P C, Hemmers O, Glans P, Hansen D L, Wang H, Whitfield S B, Lindle D W, Wehlitz R, Levin J C, Sellin I A, Perera R C C 1997 Phys. Rev. Lett. 78 4553

    [15]

    Derevianko A, Hemmers O, Oblad S, Glans P, Wang H, Whitfield B, Wehlitz R, Sellin I A, Johnson W R, Lindle D W 2000 Phys. Rev. Lett. 84 2116

    [16]

    Holste K, Borovik A A, Buhr T, Ricz S, Kvr , Bernhardt D, Schippers S, Varga D, Mller A 2014 J. Phys. Confer. Ser. 488 022041

    [17]

    Amusia M Y, Baltenkov A S, Chernysheva L V, Felfli Z, Msezane A Z 2001 Phys. Rev. A 63 052506

    [18]

    Ma K, Xie L Y, Zhang D H, Dong C Z 2015 Chin. Phys. B 24 073402

    [19]

    Li C Y, Han X Y, Wang J G, Qu Y Z 2013 Chin. Phys. B 22 123201

    [20]

    Fritzsche S {2002 Phys. Scripta T100 37

    [21]

    Balashov V V, Grum-Grahimailo A N, Kabachnik N M 2000 Polarization and Correlation in Atomic Collisions (New York: Kluwer Academic/Plenum) pp45-97

    [22]

    Rose M E 1957 Elementary Theory of Angular Momentum (New York: Wiley) pp32-42

    [23]

    Derevianko A, Johnson W R, Cheng K T 1999 At. Data Nucl. Data Tables 73 153

    [24]

    Jablonski A 2013 J. Electron Spectrosc. Relat. Phenom. 189 81

    [25]

    Jnsson P, He X, Fischer C F, Grant I P 2007 Comput. Phys. Commun. 177 597

    [26]

    Fritzsche S 2012 Comput. Phys. Commun. 183 1525

    [27]

    Nefedov V I, Yarzhemsky V G, Nefedova I S, Trzhaskovskaya M B, Band I M 2000 J. Electron Spectrosc. Relat. Phenom. 107 123

  • [1] Wei Yi-Zheng, Sun Chao, Zhu Qi-Xuan. Depth distribution law of polarization characteristics of vector acoustic field in shallow sea. Acta Physica Sinica, 2024, 73(9): 094302. doi: 10.7498/aps.73.20231767
    [2] Ma Kun, Zhu Lin-Fan, Xie Lu-You. Non-dipole effects on angular distribution of photoelectrons in sequential two-photon double ionization of Ar atom and K+ ion. Acta Physica Sinica, 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [3] Zhang Han-Tian, Zhou Qian-Hong, Zhou Hai-Jing, Sun Qiang, Song Meng-Meng, Dong Ye, Yang Wei, Yao Jian-Sheng. Effect of secondary electrons on SGEMP response. Acta Physica Sinica, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [4] Liu Yu, Xu Zhong-Feng, Wang Xing, Zeng Li-Xia, Liu Ting. Angular distribution of characteristic X-ray emission from Fe and V following photoionization. Acta Physica Sinica, 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [5] Liu Yu, Xu Zhong-Feng, Wang Xing, Hu Peng-Fei, Zhang Xiao-An. Angular distribution of L characteristic X-ray emission from Au target impacted by photons. Acta Physica Sinica, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [6] Zhang Dong, Lou Wen-Kai, Chang Kai. Theoretical progress of polarized interfaces in semiconductors. Acta Physica Sinica, 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [7] Zhu Zhen-Ye. Piezoelectric effect mechanism in lead-free tetragonal perovskite short-period superlattices. Acta Physica Sinica, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [8] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Jiang Jun, Dong Chen-Zhong. Non-dipole effects in the angular distributions of photoelectrons on sodium-like ions. Acta Physica Sinica, 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [9] Qu Shao-Hua, Cao Wan-Qiang. Research on polarization effect for relaxor ferroelectrics by spherical random bond-random field model. Acta Physica Sinica, 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [10] Huang Xu-Dong, Feng Yu-Jun, Tang Shuai. The influence of variable quantity of polarization on the current intensity of the electron emission from La-doped Pb(Zr, Sn, Ti)O3 ferroelectric cathode. Acta Physica Sinica, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [11] Zhao Jing-Bo, Du Hong-Liang, Qu Shao-Bo, Zhang Hong-Mei, Xu Zhuo. Effects of A-site equivalence and non-equivalence substitution on polarization properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Acta Physica Sinica, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [12] Wei Xi-Ye, Li Quan-Feng, Yan Hui-Yong. Theoretical study on bremsstrahlung of high energy electrons. Acta Physica Sinica, 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [13] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [14] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [15] Gu Xiao-Ling, Guo Xia, Wu Di, Xu Li-Hua, Liang Ting, Guo Jing, Shen Guang-Di. The effect of polarization and non-uniform carrier distribution in the GaN-based light emitting diodes. Acta Physica Sinica, 2007, 56(8): 4977-4982. doi: 10.7498/aps.56.4977
    [16] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurements of angular distribution and energy spectrum of hot electrons. Acta Physica Sinica, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [17] Zhang Chun-Fu, Hao Yue, You Hai-Long, Zhang Jin-Feng, Zhou Xiao-Wei. Influence of interface dipoles on the UV/solar rejection ratios of GaN/AlGaN/GaN photodetectors. Acta Physica Sinica, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [18] Li Xiao-Wei, Li Xin-Zheng, Jiang Xiao-Li, Yu Wei, Tian Xiao-Dong, Yang Shao-Peng, Fu Guang-Sheng. The electron trap effect of the sulfur + gold sensitization center on the photoelectron behaviors. Acta Physica Sinica, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [19] Yang Shao-Peng, Fu Guang-Sheng, Li Xiao-Wei, Geng Ai-Cong, Han Li. The kinetics simulation of trap depths and capture cross sections of SETs in AgC l microcrystals doped with [Fe(CN)6]4- complex. Acta Physica Sinica, 2003, 52(11): 2649-2654. doi: 10.7498/aps.52.2649
    [20] ZHANG SUI-MENG, WU XING-JU. A THEORETICAL STUDY ON ELECTRON ANGULAR DISTRIBUTIONS FOR (e,2e) PROCESSES ON HYDROGEN. Acta Physica Sinica, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
Metrics
  • Abstract views:  6025
  • PDF Downloads:  410
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2015
  • Accepted Date:  28 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回