Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions

Qing Qian-Jun Zhou Xin Xie Fang Chen Li-Qun Wang Xin-Jun Tan Shi-Hua Peng Xiao-Fang

Citation:

Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions

Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • By using non-equilibrium Greens function method, we investigate the transmission rate of acoustic phonon and thermal conductance through a parallel multi-terminal graphene junctions, the relationship between the thermal-transport property in each terminal and the number of quantum terminals, the relationship between the thermal-transport property in each terminal and the relative position of quantum terminals in quantum structure, and also study the thermaltransport property in each terminal and the rough degree of edge structure. The results show that when the graphene chains (dimer lines) across the ribbon width are fixed, the increase of the number of the parallel multi-terminal graphene junctions can reduce the transmission rate of the phonons and the thermal conductance of each output terminal as well. This is because the increase of the number of the graphene junctions can lead to the decrease of the transverse dimension of the each output terminal, which enlarges the strength of the phonon scattering and results in the reduction of the phonon transmission. Owing to long distance scattering, the transmission rate of the phonons of the furthest distant output terminal is the smallest, and also the thermal conductance of the furthest output terminal is the smallest. On the contrary, the strength of the phonon scattering is the weakest for the closest output terminal. So the transmission rate of the phonons is the biggest, which induces the thermal conductance to be the biggest. The thermal conductance of the middle-output terminal depends sensitively on the structural parameters of each terminal. This is because mainly the relative position between the middle-output terminal and the phonon-input terminal is related closely to the structural parameters of each terminal, which can influence the strength of the phonon scattering and the transmission rate of the phonons. However, the thermal conductances in the top and bottom output terminals are just sensitively dependent on the structural parameters of the respective output terminal. This is because the relative position between the top (or bottom) output terminal and the phonon-input terminal is only related to the structural parameters of the respective output terminal. The rough edge structure can reduce obviously the transmission rate of the phonons, and the thermal conductance of the closest output terminal as well. The rough edge structure can modulate slightly the transmission rate of the phonons and the thermal conductance of the other output terminal. The total thermal conductance is related closely to the number of total graphene chains, the number of the multi-terminal graphene junctions, and the rough degree of edge structure. These results shed new light on the understanding of the thermal transport behaviors of multi-terminal junction quantum devices based on graphene-based nanomaterials in practical application.
      Corresponding author: Chen Li-Qun, ldclun@163.com;xiaofangpeng11@163com ; Peng Xiao-Fang, ldclun@163.com;xiaofangpeng11@163com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247030), the Natural Science Foundation of Hunan Province, China (Grant No. 14JJ4054), the Open Research Fund of the Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, Changsha University of Science and Technology, China (Grant No. 20150103), the Talent Introducing Foundation of Central South University of Forestry and Technology, China (Grant No. 104-0160), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB212009), and the Scientific Research Fund of Jiangxi Provincial Education Department of China (Grant No. GJJ12601).
    [1]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [2]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [3]

    Basko D 2011 Science 334 610

    [4]

    Prasher R 2010 Nature 328 185

    [5]

    Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [6]

    Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901

    [7]

    Peng X F, Chen K Q 2015 Sci. Rep. 5 16215

    [8]

    Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952

    [9]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118

    [10]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [11]

    Zhang G, Zhang H 2011 Nanoscale 3 4604

    [12]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [13]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [14]

    Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319

    [15]

    Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [16]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [17]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [18]

    Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495

    [19]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [20]

    Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102

    [21]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [22]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

    [23]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [24]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [27]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [28]

    Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [29]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [30]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101

    [32]

    Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [33]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [34]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [35]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [37]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [38]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440

    [41]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [42]

    Xu Y, Li Z, Duan W 2014 Small 11 2182

    [43]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [44]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

  • [1]

    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X S, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S, Shi L 2010 Science 328 213

    [2]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [3]

    Basko D 2011 Science 334 610

    [4]

    Prasher R 2010 Nature 328 185

    [5]

    Yao H F, Xie Y E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102 (in Chinese) [姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 物理学报 62 068102]

    [6]

    Sun Q F, Yang P, Guo H 2002 Phys. Rev. Lett. 89 175901

    [7]

    Peng X F, Chen K Q 2015 Sci. Rep. 5 16215

    [8]

    Tan S H, Tang L M, Chen K Q 2014 Phys. Lett. A 378 1952

    [9]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2013 Appl. Phys. Lett. 103 263118

    [10]

    Chen K Q, Li W X, Duan W, Shuai Z, Gu B L 2005 Phys. Rev. B 72 045422

    [11]

    Zhang G, Zhang H 2011 Nanoscale 3 4604

    [12]

    Wang J S 2007 Phys. Rev. Lett. 99 160601

    [13]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381

    [14]

    Ping Y, Qing F S, Hong G, Bambi H 2007 Phys. Rev. B 75 235319

    [15]

    Hua Y C, Cao B Y 2015 2015 Acta Phys. Sin. 64 146501 (in Chinese) [华钰超, 曹炳阳 2015 物理学报 64 146501]

    [16]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 物理学报 64 186302]

    [17]

    Zheng B Y, Dong H L, Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese) [郑伯昱, 董慧龙, 陈非凡 2014 物理学报 63 076501]

    [18]

    Yao W J, Cao B Y 2014 Chin. Sci. Bull. 27 3495

    [19]

    Peng X F, Wang X J, Gong Z Q, Chen K Q 2011 Appl. Phys. Lett. 99 233105

    [20]

    Bai K K, Zhou Y, Zheng H 2014 Phys. Rev. Lett. 113 086102

    [21]

    Ouyang F P, Xu H, Li M J 2008 Acta Phys. Chim. Sin. 24 328 (in Chinese) [欧阳方平, 徐慧, 李明君 2008 物理化学学报 24 328]

    [22]

    Xu Y, Chen X, Gu B L, Duan W 2009 Appl. Phys. Lett. 95 233116

    [23]

    Xu Y, Chen X, Wang J S, Gu B L, Duan W 2010 Phys. Rev. B 81 195425

    [24]

    Peng X F, Wang X J, Chen L Q, Chen K Q 2012 Europhys. Lett. 98 56001

    [25]

    Morooka M, Yamamoto T, Watanabe K 2008 Phys. Rev. B 77 033412

    [26]

    Ouyang T, Chen Y, Xie Y 2010 Phys. Rev. B 82 245403

    [27]

    Yang N, Zhang G, Li B 2009 Appl. Phys. Lett. 95 033107

    [28]

    Zheng H, Liu H J, Tan X J, Lv H Y, Pan L, Shi J, Tang X F 2012 Appl. Phys. Lett. 100 093104

    [29]

    Huang W, Wang J S, Liang G 2011 Phys. Rev. B 84 045410

    [30]

    Hu J, Wang Y, Vallabhaneni A, Ruan X, Chen Y P 2011 Phys. Rev. B 99 113101

    [31]

    Ouyang T, Chen Y, Xie Y, Stocks G M, Zhong J 2011 Appl. Phys. Lett. 99 233101

    [32]

    Sevinli H, Cuniberti G 2010 Phys. Rev. B 81 113401

    [33]

    Tan S H, Tang L M, Xie Z X, Pan C N, Chen K Q 2013 Carbon 65 181

    [34]

    Xie Z X, Chen K Q, Duan W H 2011 J. Phys.: Condens. Matter 23 315302

    [35]

    Peng X F, Chen K Q 2014 Carbon 77 360

    [36]

    Ouyang T, Chen Y P, Yang K K, Zhong J X 2009 Europhys. Lett. 88 28002

    [37]

    Zhu T, Ertekin E 2014 Phys. Rev. B 90 195209

    [38]

    Chen J, Zhang G, Li B 2013 Nanoscale 5 532

    [39]

    Chen J, Walther J H, Koumoutsakos P 2014 Nano Lett. 14 819

    [40]

    Peng X F, Xiong C, Wang X J, Chen L Q, Luo Y F, Li J B 2013 Computational Materials Science 77 440

    [41]

    Pan C N, Xie Z X, Tang L M, Chen K Q 2012 Appl. Phys. Lett. 101 103115

    [42]

    Xu Y, Li Z, Duan W 2014 Small 11 2182

    [43]

    Zhu J L, Dai Z S, Hu X 2003 Phys. Rev. B 68 45324

    [44]

    Xia J B, Li S S 2003 Phys. Rev. B 68 75310

  • [1] Wu Cheng-Wei, Ren Xue, Zhou Wu-Xing, Xie Guo-Feng. Theoretical study of anisotropy and ultra-low thermal conductance of porous graphene nanoribbons. Acta Physica Sinica, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Theoretical Study on Anisotropy and Ultra-low Thermal Conductance of Porous Graphene nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211477
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang. Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons. Acta Physica Sinica, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [7] Bai Ji-Yuan, He Ze-Long, Li Li, Han Gui-Hua, Zhang Bin-Lin, Jiang Ping-Hui, Fan Yu-Huan. Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules. Acta Physica Sinica, 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [10] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [11] Yao Hai-Feng, Xie Yue-E, Ouyang Tao, Chen Yuan-Ping. Thermal transport of graphene nanoribbons embedding linear defects. Acta Physica Sinica, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [12] Peng Xiao-Fang, Chen Li-Qun, Luo Yong-Feng, Liu Lin-Hong, Wang Kai-Jun. Acoustic phonon transport and thermal conductance in quantum waveguide with abrupt quantum junctions modulated with double T-shapedquantum structure. Acta Physica Sinica, 2013, 62(5): 056805. doi: 10.7498/aps.62.056805
    [13] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [14] Bao Zhi-Gang, Chen Yuan-Ping, Ouyang Tao, Yang Kai-Ke, Zhong Jian-Xin. Thermal transport in L-shaped graphene nano-junctions. Acta Physica Sinica, 2011, 60(2): 028103. doi: 10.7498/aps.60.028103
    [15] Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi. Effects of controllable defects on thermal conductance in a nanowire with a quantum box. Acta Physica Sinica, 2011, 60(11): 116301. doi: 10.7498/aps.60.116301
    [16] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [18] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [19] Yao Ling-Jiang, Wang Ling-Ling. Characteristics of acoustic phonon transport and thermal conductance in quasi-one-dimensional quantum waveguides with semi-circular-arc cavity. Acta Physica Sinica, 2008, 57(5): 3100-3106. doi: 10.7498/aps.57.3100
    [20] Dai Zhen-Hong, Ni Jun. Electron transport in multi-terminal quantum chain systems based on the Green’s functions. Acta Physica Sinica, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
Metrics
  • Abstract views:  4711
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  20 November 2015
  • Accepted Date:  14 January 2016
  • Published Online:  05 April 2016

/

返回文章
返回