Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultracold collisions in a dual species 23Na-133Cs magneto-optical trap

Xu Run-Dong Liu Wen-Liang Wu Ji-Zhou Ma Jie Xiao Lian-Tuan Jia Suo-Tang

Citation:

Ultracold collisions in a dual species 23Na-133Cs magneto-optical trap

Xu Run-Dong, Liu Wen-Liang, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The production and research of ultracold heteronuclear molecules have aroused the great interest recently. On the one hand, these molecules are extremely popular in experiments for exploring the collision dynamic behaviors in threshold, photoassociative spectrum and strong dipole-dipole interactions. On the other hand, ultracold polar molecules populated at deeply bound levels in the singlet ground state are the right candidates to investigate quantum memories for quantum simulation, and to study strongly interacting quantum degenerate gases. The precise knowledge of cold collision processes between two different types of alkali atoms is necessary for understanding and utilizing ultracold heteronuclear molecules, sympathetic cooling, and thus formation of two species BEC. The goal of the present investigation is to study the collisions between ultracold sodium atoms and cesium atoms. We systematically demonstrate simultaneously trapping ultracold sodium and cesium atoms in a dual-species magneto-optical trap (MOT). The sodium atom trap loss rate coefficient Na-Cs is measured as a function of Na trapping laser intensity. At low intensities, the trap loss is dominated by ground-state hyperfine-changing collisions, while at high intensities, collisions involving excited atoms are more important. A strong interspecies collision-induced loss for Na atoms in the MOT is observed. In order to obtain the trap loss coefficient Na-Cs, we proceed in two steps. First, the Cs repumping laser is blocked to avoid the formation of ultraold Cs atoms. The loading process of Na atoms is recorded when the Cs trapping laser is on. Second, the loading curves of the Na atoms are obtained as Cs atoms are present with the repumping laser beams. The total losses PNa and PNa' are acquired by fitting the two loading curves of trapped Na atoms. Thus, the trap loss coefficient Na-Cs can be derived from the difference between total losses PNa and PNa' divided by the density of the Cs atoms. The coefficient Na-Cs decreases in a range of 5-10mW/cm2, which originates from the hyperfine-state changing (HFC) collision. A Doppler model is used to calculate the Na atom trap depth, in that the atom trap depth and exoergic energy determine the behavior of the collisional trap loss rate coefficient. The three corresponding calculated critical intensities of Na trapping laser are 7.98, 14.82, 16.2 mW/cm2 respectively in the Na-Cs HFC collision process. The first calculated critical intensity value agrees well with the experimental result. Our work provides a valuable insight into HFC collision between Na and Cs atoms and also paves the way for the production of ultracold NaCs molecules using Photoassociation (PA) technology. Furthermore, the experimental results lay a great basis for the obtainments of high sensitive heteronuclear NaCs molecular PA spectrum and the creation of deeply bound ground state molecules.
      Corresponding author: Ma Jie, mj@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, 11434007), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631

    [2]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese) [王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民 2014 物理学报 63 053202]

    [3]

    Dutta S, Altaf A, Lorenz J, Elliott D S, Chen Y P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105301

    [4]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093301

    [5]

    Santos M S, Nussenzveig P, Antunes A, Cardona P S P, Bagnato V S 1999 Phys. Rev. A 60 3892

    [6]

    Young Y E, Ejnisman R, Shaffer J P, Bigelow N P 2000 Phys. Rev. A 62 055403

    [7]

    Zhang J C, Liu Y F, Sun J F 2011 Chin. Phys. B 20 023401

    [8]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [9]

    DeMile D 2002 Phys. Rev. Lett. 88 067901

    [10]

    Yang Y, Ji Z H, Yuan J P, Wang L R, Zhao Y T, Ma J, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 213301 (in Chinese) [杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂 2012 物理学报 61 213301]

    [11]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [12]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [13]

    Mancini M W, Caires A R L, Telles G D, Bagnato V S, Marcassa L G 2004 Eur. Phys. J. D 30 105

    [14]

    Marinescu M, Sadeghpour H R 1999 Phys. Rev. A 59 390

    [15]

    Gallagher A, Pritchard D 1989 Phys. Rev. Lett. 63 957

    [16]

    Ji Z H, Wu J Z, Zhang H S, Meng T F, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025202

    [17]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [18]

    Shaffer J P, Chalupczak W, Bigelow N P 1999 Phys. Rev. A 60 R3365

    [19]

    Gensemer S D, Villicana V S, Tan K Y N, Grove T T, Gould P L 1997 Phys. Rev. A 56 4055

    [20]

    Han Y X, Wang B, Ma J, Xiao J T, Wang H 2007 Acta Sin. Quantum Opt. 13 30 (in Chinese) [韩燕旭, 王波, 马杰, 校金涛, 王海 2007 量子光学学报 13 30]

    [21]

    Walker T, Sesko D, Wieman C E 1990 Phys. Rev. Lett. 64 408

    [22]

    Tiwari V B, Singh S, Rawat H S, Mehendale S C 2008 Phys. Rev. A 78 063421

    [23]

    Aubck G, Binder C, Holler L, Wippel V, Rumpf K, Szczepkowski J, Ernst W E, Windholz L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S871

    [24]

    Wallace C D, Dinneen T P, Tan K N, Grove T T, Gould P L 1992 Phys. Rev. Lett. 69 897

  • [1]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631

    [2]

    Wang J Y, Liu B, Diao W T, Jin G, He J, Wang J M 2014 Acta Phys. Sin. 63 053202 (in Chinese) [王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民 2014 物理学报 63 053202]

    [3]

    Dutta S, Altaf A, Lorenz J, Elliott D S, Chen Y P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 105301

    [4]

    Chen P, Li Y Q, Zhang Y C, Wu J Z, Ma J, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093301

    [5]

    Santos M S, Nussenzveig P, Antunes A, Cardona P S P, Bagnato V S 1999 Phys. Rev. A 60 3892

    [6]

    Young Y E, Ejnisman R, Shaffer J P, Bigelow N P 2000 Phys. Rev. A 62 055403

    [7]

    Zhang J C, Liu Y F, Sun J F 2011 Chin. Phys. B 20 023401

    [8]

    Anderlini M, Courtade E, Cristiani M, Cossart D, Ciampini D, Sias C, Morsch O, Arimondo E 2005 Phys. Rev. A 71 061401

    [9]

    DeMile D 2002 Phys. Rev. Lett. 88 067901

    [10]

    Yang Y, Ji Z H, Yuan J P, Wang L R, Zhao Y T, Ma J, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 213301 (in Chinese) [杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂 2012 物理学报 61 213301]

    [11]

    Huang L H, Wang P J, Fu Z K, Zhang J 2014 Chin. Phys. B 23 013402

    [12]

    Santos L, Shlyapnikov G V, Zoller P, Lewenstein M 2000 Phys. Rev. Lett. 85 1791

    [13]

    Mancini M W, Caires A R L, Telles G D, Bagnato V S, Marcassa L G 2004 Eur. Phys. J. D 30 105

    [14]

    Marinescu M, Sadeghpour H R 1999 Phys. Rev. A 59 390

    [15]

    Gallagher A, Pritchard D 1989 Phys. Rev. Lett. 63 957

    [16]

    Ji Z H, Wu J Z, Zhang H S, Meng T F, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025202

    [17]

    Chang X F, Ji Z H, Yuan J P, Zhao Y T, Yang Y G, Xiao L T, Jia S T 2013 Chin. Phys. B 22 093701

    [18]

    Shaffer J P, Chalupczak W, Bigelow N P 1999 Phys. Rev. A 60 R3365

    [19]

    Gensemer S D, Villicana V S, Tan K Y N, Grove T T, Gould P L 1997 Phys. Rev. A 56 4055

    [20]

    Han Y X, Wang B, Ma J, Xiao J T, Wang H 2007 Acta Sin. Quantum Opt. 13 30 (in Chinese) [韩燕旭, 王波, 马杰, 校金涛, 王海 2007 量子光学学报 13 30]

    [21]

    Walker T, Sesko D, Wieman C E 1990 Phys. Rev. Lett. 64 408

    [22]

    Tiwari V B, Singh S, Rawat H S, Mehendale S C 2008 Phys. Rev. A 78 063421

    [23]

    Aubck G, Binder C, Holler L, Wippel V, Rumpf K, Szczepkowski J, Ernst W E, Windholz L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S871

    [24]

    Wallace C D, Dinneen T P, Tan K N, Grove T T, Gould P L 1992 Phys. Rev. Lett. 69 897

  • [1] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [2] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [3] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [4] Gou Wei, Liu Kang-Kang, Fu Xiao-Hu, Zhao Ru-Chen, Sun Jian-Fang, Xu Zhen. Optimization of the loading rate of magneto-optical trap for neutral mercury atom. Acta Physica Sinica, 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [5] Zhao Yan-Ting, Yuan Jin-Peng, Ji Zhong-Hua, Li Zhong-Hao, Meng Teng-Fei, Liu Tao, Xiao Lian-Tuan, Jia Suo-Tang. The temperature measurement for the ultracold Cs2 molecules formed by photoassociation. Acta Physica Sinica, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [6] Wen Rui-Juan, Du Jin-Jin, Li Wen-Fang, Li Gang, Zhang Tian-Cai. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms. Acta Physica Sinica, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [7] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [8] Wang Jie-Ying, Liu Bei, Diao Wen-Ting, Jin Gang, He Jun, Wang Jun-Min. Optimization of the light-induced-fluorescence signals of single atoms and efficient loading of single atoms into a magneto-optical trap. Acta Physica Sinica, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [9] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [10] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [11] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [12] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [13] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [14] Zhang Peng-Fei, Li Gang, Zhang Yu-Chi, Yang Rong-Can, Guo Yan-Qiang, Wang Jun-Min, Zhang Tian-Cai. Investigation of dynamics of magneto-optical trap loading by light-induced atom desorption. Acta Physica Sinica, 2010, 59(9): 6423-6429. doi: 10.7498/aps.59.6423
    [15] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [16] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [17] Wang Li-Rong, Ma Jie, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of ultracold cesium atom photoassociation spectrum using an amplitude modulation technique. Acta Physica Sinica, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [18] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Measurement of the number of cold atoms trapped in cesium magneto-optical trap via probe absorption. Acta Physica Sinica, 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [20] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
Metrics
  • Abstract views:  5520
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2015
  • Accepted Date:  14 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回