Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of elastic energy relaxation process for granular materials at quasi-static state

Jin Xin-Xin Jin Feng Liu Ning Sun Qi-Cheng

Citation:

Analysis of elastic energy relaxation process for granular materials at quasi-static state

Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The granular system has complicated force chain network and multiple relaxation mechanisms. The different relaxation mechanisms have largely effects on others. The force chains divide the whole system into many soft zones which dominate the main dissipation process. The system evolves into lower potential energy state gradually and forms directional arrangement under an external load. During the evolution, the complex relaxation behaviors such as transport and migrant processes, make it difficult to distinguish different dissipated mechanisms. Each single physical mechanism stripping from multiple mechanisms should be studied in depth. While among all the mechanisms, the structure evolution plays a crucial role and needs to be paid more attention to. From the view of potential energy, the detailed energy transformation is illustrated. The granular system is often at a metastable state. When the external disturbance is large enough, the system would step over the energy barrier to a new state. The height of energy barrier is related to the packing structure and grain property. In energy landscape, there exist many energy valleys which correspond to different metastable states. The grain rearrangement and structure reorganization are two main evolution processes at a quasi-static state. The former brings about major potential energy change because of friction and forms certain contact relations. While the latter evolves on the basis of the skeleton formed by grain rearrangement and reaches lower energy state. The conversion among different energy valleys can be used to explain stress relaxation process. In a complex granular system, the choosing of appropriate internal state variables becomes important, which can reflect specific relaxation process and internal characteristics. The energy fluctuation in the system has a huge influence on dissipation process and macroscopic response and is an effective internal variable to have an insight into the structure evolution. Then granular temperature rooted from gas kinetics is introduced to model the macroscopic behaviors. For loose and rapid granular flow, the kinetic granular temperature itself is the root to affect the flow process. While in a dense granular system, the granular temperature at a quasi-static state is referred to as elastic energy fluctuation. The structure can be kept stable when granular temperature exists on account of the mutual confinement among particles. And the granular temperature at a stable state is just a representation of internal structure of granular assembly. When the granular temperature stimulated by the external disturbance exceeds the stable value, the irreversible process happens and the difference between the excited state and stationary state is the driving force for evolution. The stress relaxations under different surface properties and confining pressures are simulated using non-equilibrium theory with new change for granular temperature. It can be found that the granular temperature difference triggers elastic relaxation and force chains reorganization. And the larger the temperature difference, the further away from the steady state the system is and the larger the stress change is. The more smooth the surface and the smaller the confining pressure, the lower resistance is generated, so that the initial granular temperature difference is larger and the stress change is larger during stress relaxation. The granular temperature decreases as time goes by because of its own relaxation. When the difference is equal to zero, the process of stress relaxation finishes and the system evolves into a global minimum of potential energy.
      Corresponding author: Sun Qi-Cheng, qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51239006, 11572178, 51408333), and Tsinghua University Initiative Scientific Research Program.
    [1]

    Coussot P 2014 Rheophysics (Switzerland: Springer) 231

    [2]

    Wood D M, Leśniewska D 2011 Granular Matter 13 395

    [3]

    Cundall P A, Strack O D L 1979 Geotechnique 29 47

    [4]

    Li X S, Dafalias Y F 2015 J. Mech. Phys. Solids 78 141

    [5]

    Collins I F, Houlsby G T 1997 Proc. Royal Soc. A 453 1975

    [6]

    Li X S, Dafalias Y F 2012 J. Eng. Mech. ASCE 138 263

    [7]

    Jiang Y M, Liu M 2014 Europhys. J. E 38 1

    [8]

    Jiang Y M, Liu M 2008 Phys. Rev. E 77 02130621

    [9]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [10]

    Sun Q, Song S, Jin F, Jiang Y 2012 Theor. Appl. Mech. Lett. 2 021002

    [11]

    Sun Q C, Liu C Q, Zhou G D 2015 Acta Phys. Sin. 64 236101 (in Chinese) [孙其诚, 刘传奇, 周公旦 2015 物理学报 64 236101]

    [12]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 64 076101]

    [13]

    Sun Q, Jin F, Wang G, Song S, Zhang G 2015 Sci. Rep. 5 9652

    [14]

    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F 2014 Nat. Commun. 5 3725

    [15]

    Song S, Sun Q, Jin F, Zhang C 2014 Acta Mech. Solida Sin. 27 15

    [16]

    Sun Q C 2015 Acta Phys. Sin. 64 076101 (in Chinese) [孙其诚 2015 物理学报 64 076101]

    [17]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [18]

    Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001

  • [1]

    Coussot P 2014 Rheophysics (Switzerland: Springer) 231

    [2]

    Wood D M, Leśniewska D 2011 Granular Matter 13 395

    [3]

    Cundall P A, Strack O D L 1979 Geotechnique 29 47

    [4]

    Li X S, Dafalias Y F 2015 J. Mech. Phys. Solids 78 141

    [5]

    Collins I F, Houlsby G T 1997 Proc. Royal Soc. A 453 1975

    [6]

    Li X S, Dafalias Y F 2012 J. Eng. Mech. ASCE 138 263

    [7]

    Jiang Y M, Liu M 2014 Europhys. J. E 38 1

    [8]

    Jiang Y M, Liu M 2008 Phys. Rev. E 77 02130621

    [9]

    Jiang Y M, Liu M 2009 Granular Matter 11 139

    [10]

    Sun Q, Song S, Jin F, Jiang Y 2012 Theor. Appl. Mech. Lett. 2 021002

    [11]

    Sun Q C, Liu C Q, Zhou G D 2015 Acta Phys. Sin. 64 236101 (in Chinese) [孙其诚, 刘传奇, 周公旦 2015 物理学报 64 236101]

    [12]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 64 076101]

    [13]

    Sun Q, Jin F, Wang G, Song S, Zhang G 2015 Sci. Rep. 5 9652

    [14]

    Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F 2014 Nat. Commun. 5 3725

    [15]

    Song S, Sun Q, Jin F, Zhang C 2014 Acta Mech. Solida Sin. 27 15

    [16]

    Sun Q C 2015 Acta Phys. Sin. 64 076101 (in Chinese) [孙其诚 2015 物理学报 64 076101]

    [17]

    Miksic A, Alava M J 2013 Phys. Rev. E 88 032207

    [18]

    Brujic J, Song C, Wang P, Briscoe C, Marty G, Makse H A 2007 Phys. Rev. Lett. 98 248001

  • [1] Jin Xiao, Wang Li-Min. Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition. Acta Physica Sinica, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [2] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [3] Yan Xi-Ping, Peng Zheng, He Fei-Fei, Jiang Yi-Min. Measurement of shear elasticity of granular solid. Acta Physica Sinica, 2016, 65(12): 124501. doi: 10.7498/aps.65.124501
    [4] Sun Qi-Cheng. Granular structure and the nonequilibrium thermodynamics. Acta Physica Sinica, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [5] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] Fang Ying-Guang. Shear test and physical mechanism analysis on size effect of granular media. Acta Physica Sinica, 2014, 63(3): 034502. doi: 10.7498/aps.63.034502
    [7] Qian Zu-Wen. Viscosity coefficient in granular medium. Acta Physica Sinica, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [8] Zhang Wei, Chen Wen-Zhou, Wang Jun-Fei, Zhang Xiao-Dong, Jiang Zhen-Yi. Ab initio calculation of phase transitions, elastic, and thermodynamic properties of MnPd alloys. Acta Physica Sinica, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [9] Yang Ze-Jin, Linghu Rong-Feng, Cheng Xin-Lu, Yang Xiang-Dong. First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Acta Physica Sinica, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [10] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [11] Wang Na, Tang Bi-Yu. Structural,elastic and electronic properties of L12 aluminum phases from first principles calculation. Acta Physica Sinica, 2009, 58(13): 230-S234. doi: 10.7498/aps.58.230
    [12] Yi Chen-Hong, Mu Qing-Song, Miao Tian-De. Discrete element method simulation on the force chains in the two-dimensional granular system under gravity. Acta Physica Sinica, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [13] Peng Zheng, Lu Kun-Quan, Hou Mei-Ying. Slow drag in jammed granular medium. Acta Physica Sinica, 2009, 58(9): 6566-6572. doi: 10.7498/aps.58.6566
    [14] Zhou Zheng-Cun, Zhao Hong-Ping, Gu Su-Yi, Wu Qian. Relaxation resulting from atomic defects in quenched Fe-Al alloys. Acta Physica Sinica, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [15] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [16] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [17] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] Wang Huan-You, Cao Xiao-Ping, Jiang Yi-Min, Liu Mario. Strain and elasticity of static granular matter. Acta Physica Sinica, 2005, 54(6): 2784-2790. doi: 10.7498/aps.54.2784
    [19] Xu Feng, Huang Yong-Ren. . Acta Physica Sinica, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] . Acta Physica Sinica, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
Metrics
  • Abstract views:  4582
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2016
  • Accepted Date:  27 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回