Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons

Zhu Zhen Li Chun-Xian Zhang Zhen-Hua

Citation:

Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons

Zhu Zhen, Li Chun-Xian, Zhang Zhen-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene is predicted to hold a promising use for developing future miniaturized electronic devices. However, the magnetic transport properties based on the armchair-edged graphene nanoribbons (AGNRs) is less studied in currently existing work. So in this work the special chemical modified nanoribbons based on the edge of the AGNR bridged by the transition metal Mn atom and passivated subsequently by two F atoms or two H atoms (AGNR-Mn-F2 or AGNR-Mn-H2) are proposed theoretically. Our calculations from first-principle method based on the spin-polarized density functional theory combined with the non-equilibrium Green's function technique show that the heterojunction F2-AGNR-Mn-H2 consisting of such two types of nanoribbons possesses the excellent magnetic device features, namely, the spin polarization is able to reach almost 100% in a very large bias region, and under P magnetic configuration (the external magnetic fields applied perpendicularly to two electrodes are set to point to the same direction), the single spin filtering effects can be realized, while under the AP configuration (the external magnetic fields applied perpendicularly to two electrodes are set to point to the opposite directions), the dual spin filtering effects can be realized. It is also found that such a heterojunction features dual diode-like effect, and its rectification ratio is up to be 108. Additionally, changing the direction of switching magnetic field, namely, changing the magnetic configurations from one kind of case to another, would lead to an obvious spin valve effect, and the giant magnetoresistace approaches to 108%. These findings suggest that the excellent spin polarization, dual diode-like effect, and giant magnetoresistace effect can be realized simultaneously for this heterojunction, therefore, it holds good promise in developing spintronic devices.
      Corresponding author: Zhang Zhen-Hua, lgzzhang@sohu.com.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61371065, 51302022) and Hunan Provincial Natural Science Foundation of China (Grant Nos. 12JJ3004, 14JJ2076, 2015JJ3002, 2015JJ2009, 2015JJ2013).
    [1]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [2]

    Fischer J, Trauzettel B, Loss D2009 Phys. Rev. B 80 155401

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [4]

    Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H 2010 Appl. Phys. Lett. 97 023310

    [5]

    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D 2006 Appl. Phys. Lett. 88 14210

    [6]

    Rivero P, Jimenez-Hoyos C A, Scuseria G E 2013 J. Phys. Chem. B 117 12750

    [7]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [8]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 115274

    [9]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [10]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [11]

    Zhang X J, Chen K Q, Tang L M, Long M Q 2011 Phys. Lett. A 375 3319

    [12]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys.Sin. 64 196101 (in Chinese) [陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 物理学报 64 196101]

    [13]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937

    [14]

    Qiu M, Liew K M 2012 J. Phys. Chem C 116 11709

    [15]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 2889

    [16]

    Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S 2013 J. Phys. Chem. 117 26790

    [17]

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102 (in Chinese) [李彪, 徐大海, 曾晖 2014 物理学报 63 117102]

    [18]

    Song L, Zheng X, Wang R, Zeng Z 2010 J. Phys. Chem. C 114 12145

    [19]

    Cao C, Wu M, Jiang J, Cheng H P 2010 Phys. Rev. B 81 205424

    [20]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Phys. Chem. C 133 124703

    [21]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [22]

    Jaiswal N K, Srivastava P 2013 Nanotech 12 685

    [23]

    Jaiswal N K, Srivastava P 2011 Solid State Commun. 151 1490

    [24]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [25]

    Santos E J, Snchez Portal D, Ayuela A 2010 Phys. Rev. B 81 125433

    [26]

    Longo R C, Carrete J, Ferrer J, Gallego L J 2010 Phys. Rev. B 81 115418

    [27]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B: Condens. Matter. 82 2889

    [28]

    Qiu M, Liew K M 2011 J. Appl. Phys. 110 064319

    [29]

    Landauer R 1970 Philos. Mag. 21 863

    [30]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P 2014 Carbon 69 142

    [31]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

  • [1]

    Huertas-Hernando D, Guinea F, Brataas A 2006 Phys. Rev. B 74 155426

    [2]

    Fischer J, Trauzettel B, Loss D2009 Phys. Rev. B 80 155401

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [4]

    Kim T W, Gao Y, Acton O, Yip H L, Ma H, Chen H 2010 Appl. Phys. Lett. 97 023310

    [5]

    Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D 2006 Appl. Phys. Lett. 88 14210

    [6]

    Rivero P, Jimenez-Hoyos C A, Scuseria G E 2013 J. Phys. Chem. B 117 12750

    [7]

    Zeng M, Shen L, Zhou M, Zhang C, Feng Y 2011 Phys. Rev. B 83 115427

    [8]

    Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 115274

    [9]

    Zeng M, Shen L, Yang M, Zhang C, Feng Y 2011 Appl. Phys. Lett. 98 053101

    [10]

    Ren Y, Chen K Q 2010 J. Appl. Phys. 107 044514

    [11]

    Zhang X J, Chen K Q, Tang L M, Long M Q 2011 Phys. Lett. A 375 3319

    [12]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys.Sin. 64 196101 (in Chinese) [陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 物理学报 64 196101]

    [13]

    Wu M, Wu X, Zeng X C 2010 J. Phys. Chem. C 114 3937

    [14]

    Qiu M, Liew K M 2012 J. Phys. Chem C 116 11709

    [15]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B 82 2889

    [16]

    Wagner P, Ewels C P, Adjizian J J, Magaud L, Pochet P, Roche S 2013 J. Phys. Chem. 117 26790

    [17]

    Li B, Xu D H, Zeng H 2014 Acta Phys. Sin. 63 117102 (in Chinese) [李彪, 徐大海, 曾晖 2014 物理学报 63 117102]

    [18]

    Song L, Zheng X, Wang R, Zeng Z 2010 J. Phys. Chem. C 114 12145

    [19]

    Cao C, Wu M, Jiang J, Cheng H P 2010 Phys. Rev. B 81 205424

    [20]

    Cocchi C, Prezzi D, Calzolari A, Molinari E 2010 J. Phys. Chem. C 133 124703

    [21]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese) [王鼎, 张振华, 邓小清, 范志强 2013 物理学报 62 207101]

    [22]

    Jaiswal N K, Srivastava P 2013 Nanotech 12 685

    [23]

    Jaiswal N K, Srivastava P 2011 Solid State Commun. 151 1490

    [24]

    Xiao J, Yang Z X, Xie W T, Xiao L X, Xu H, Ouyang F P 2012 Chin. Phys. B 21 027102

    [25]

    Santos E J, Snchez Portal D, Ayuela A 2010 Phys. Rev. B 81 125433

    [26]

    Longo R C, Carrete J, Ferrer J, Gallego L J 2010 Phys. Rev. B 81 115418

    [27]

    Wang Y, Cao C, Cheng H P 2010 Phys. Rev. B: Condens. Matter. 82 2889

    [28]

    Qiu M, Liew K M 2011 J. Appl. Phys. 110 064319

    [29]

    Landauer R 1970 Philos. Mag. 21 863

    [30]

    Li J, Zhang Z H, Wang D, Zhu Z, Fan Z Q, Tang G P 2014 Carbon 69 142

    [31]

    Zhou Y H, Zeng J, Tang L M, Chen K Q, Hu W P 2013 Org. Electron. 14 2940

  • [1] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [2] Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng. Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure. Acta Physica Sinica, 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [3] Xiang Yang, Zheng Jun, Li Chun-Lei, Guo Yong. Spin filter effect of germanene nanoribbon controlled by local exchange field and electric field. Acta Physica Sinica, 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [4] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [5] Zeng Shao-Long, Li Ling, Xie Zheng-Wei. Tunneling times in double spin-filter junctions. Acta Physica Sinica, 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [6] Liu Mu-Lin, Min Qiu-Ying, Ye Zhi-Qing. Efficiency droop in blue InGaN/GaN light emitting diodes on Si substrate. Acta Physica Sinica, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [7] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [8] Sun Peng, Du Lei, He Liang, Chen Wen-Hao, Liu Yu-Dong, Zhao Ying. Radiation degradation mechanism of pn-junction diode based on 1/f noise variation. Acta Physica Sinica, 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [9] Li Yin-Feng, Feng Su-Qin, Wang Jian-Yong. Influence of AC current on the profile of GMI effect in Fe-based nanocrystalline wire. Acta Physica Sinica, 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [10] Bao Bing-Hao, Ren Nai-Fei, Luo Ying. Theory of giant magneto-impedance effect in amorphous ribbon with transverse bias magnetic field. Acta Physica Sinica, 2011, 60(3): 037503. doi: 10.7498/aps.60.037503
    [11] Tang Nai-Yun. Spin polarized current transport and charge polarization effect in ferromagnetic GaMnN resonant tunneling diode. Acta Physica Sinica, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [12] Huang Wen-Bo, Zeng Wen-Jin, Wang Li, Peng Jun-Biao. Negative capacitance in polymer light-emitting diodes. Acta Physica Sinica, 2008, 57(9): 5983-5988. doi: 10.7498/aps.57.5983
    [13] Pan Hai-Lin, Cheng Jin-Ke, Zhao Zhen-Jie, He Jia-Kang, Ruan Jian-Zhong, Yang Xie-Long, Yuan Wang-Zhi. Study of the LC resonance giant magneto-impedance effect. Acta Physica Sinica, 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [14] Wang Wen-Jing, Yuan Hui-Min, Jiang Shan, Xiao Shu-Qin, Yan Shi-Shen. Transverse giant magneto-impedance effect in FeCuCrVSiB single layered and multilayered films. Acta Physica Sinica, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [15] Chen Wei-Ping, Xiao Shu-Qin, Wang Wen-Jing, Jiang Shan, Liu Yi-Hua. Study on the giant magnetoimpedance effect of FeCuCrVSiB multilayered films. Acta Physica Sinica, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [16] Yang Quan-Min, Wang Ling-Ling, Sun De-Cheng. Theoretical study on the influence of the microstructure of Fe73.5Cu1Nb3Si13.5B9 on its giant magneto-impedance effect. Acta Physica Sinica, 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [17] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming. The simulation study of the tunneling effect in the breakdown of 4H-SiC pn junc tion diode. Acta Physica Sinica, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [18] Zhang Rong, Xu Yu-Sheng. Giant Magneto-Impedance Effect in Amorphous CoFeNiNbSiB Alloy Ribbon. Acta Physica Sinica, 1999, 48(13): 175-179. doi: 10.7498/aps.48.175
    [19] He Jun, Guo Hui-Qun, Cheng Li-Zhi, Shen Bao-Gen, He Kai-Yuan, Liu Yi-Hua. The Giant Magneto-Impedance Effect of Current-Annealed Fe-Based Ribbons. Acta Physica Sinica, 1999, 48(13): 159-163. doi: 10.7498/aps.48.159
    [20] SHE WEI-LONG, WU QI, LI QING-XING, YU ZHEN-XIN, ZHANG QING-LUN, CHEN HUAN-CHU. BACKWARD SCATTERING AND OPTICAL DIODE EFFECT IN Mn DOPED KNSBN CRYSTAL. Acta Physica Sinica, 1992, 41(10): 1706-1714. doi: 10.7498/aps.41.1706
Metrics
  • Abstract views:  4860
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2016
  • Accepted Date:  06 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回