Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets

Tan Wen-Jing An Zhu Zhu Jing-Jun Zhao Jian-Ling Liu Man-Tian

Citation:

Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets

Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bremsstrahlung emission produced by electron impact on thick or thin targets is one of the fundamental radiation processes, and the interest in its study continues to grow because of its importance for understanding the interaction of electrons with matter and also for many practical applications. Nowadays, there has been some disagreement concerning whether or not the polarization bremsstrahlung, which is emitted by the atomic electrons in a target polarized by the incident charged particles, contributes to the total bremsstrahlung when the incident electrons bombard a solid target. Some reports suggested that the polarization bremsstrahlung does not significantly contribute to the total bremsstralung in experiments involving solid targets. However, some recent experimental data indicated that a significant amount of polarization bremsstrahlung contributes to the total bremsstrahlung when electrons from -decays of radioactive nuclei bombard solid targets. In other papers, the comparison between the bremsstrahlung spectra produced by electron impact on different thick solid targets from low-Z to high-Z elements and the simulation spectra of Monte Carlo code PENELOPE showed that there are certain discrepancies between the experimental and simulation results, and on the whole the factors required for the experimental results and simulation spectra to match with each other seem to increase slightly with the target atomic number increasing and for high-Z elements experimental results are about 10% higher than simulation results. PENELOPE is a general-purpose Monte Carlo code that simulates coupled electron-photon transportation, in which simulation for bremsstrahlung is only based on ordinary bremsstrahlung and any contribution from polarization bremsstrahlung is not included Therefore, whether the discrepancies between the experimental and simulation spectra are caused by the polarization bremsstrahlung or by other reasons remains to be further studied. In this paper, we improve the Faraday cup to measure the incident electron charges more accurately Meanwhile, a highpurity Al film of 7.05 m thickness is placed in front of the ultra-thin window of the X-ray silicon drifted detector (SDD) to prevent the backscattered electrons that escape from the side hole of the Faraday cup entering into the SDD detector. The Al film thickness is measured by the method of Rutherford backscattering. In addition, we adopt a data processing method which is different from previous one, to take into account the interaction between backscattered electrons and the window of the SDD detector. New measurements of bremsstrahlung spectra generated by 10-25 keV electron impact, respectively, on thick targets of tungsten and gold are reported in this paper. The experimental data are compared with the simulation results of X-ray spectra obtained from the PENELOPE code, and they are in very good agreement except for the lower energy region ( 3 keV) where the experimental spectra are slightly lower than the simulation spectra. The reason for the small discrepancy for the lower energy region ( 3 keV) is also discussed. The results presented in this paper indicate that the X-ray spectra, which are produced by electron impact on solid targets, do not include obvious contribution of polarization bremsstrahlung, and the PENELOPE code can reliably describe the bremsstrahlung produced by electron impact on solid thick targets.
      Corresponding author: An Zhu, anzhu@scu.edu.cn;zhujingjun@scu.edu.cn ; Zhu Jing-Jun, anzhu@scu.edu.cn;zhujingjun@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11175123).
    [1]

    Acosta E, Llovet X, Salvat F 2002 Appl. Phys. Lett. 80 3228

    [2]

    Matsuyama M, Watanabe K, Hasegawa K {1998 Fusion Eng. Design 39 929

    [3]

    An Z, Hou Q, Long J J 2008 Nucl. Instr. Meth. B 266 3643

    [4]

    Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100

    [5]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M 1977 At. Data Nucl. Data Tables 20 175

    [6]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M {1981 Erratum 26 477

    [7]

    Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381

    [8]

    Seltzer S M, Berger M J 1985 Nucl. Instr. Meth. B 12 95

    [9]

    Seltzer S M, Berger M J 1986 At. Data Nucl. Data Tables 35 345

    [10]

    Shanker R 2006 Radiat. Phys. Chem. 75 1176

    [11]

    Portillo S, Quarles C A 2003 Phys. Rev. Lett. 91 173201

    [12]

    Quarles C A, Portillo S 2006 Radiat. Phys. Chem. 75 1187

    [13]

    Williams S, Quarles C A 2008 Phys. Rev. A 78 062704

    [14]

    Amrit Singh, Dhaliwal A S 2016 Radiat. Phys. Chem. 119 167

    [15]

    Salvat F, Fernndez-Varea J M, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [16]

    Salvat F, Fernndez-Varea J M, Sempau J, Llovet X 2006 Radiat. Phys. Chem. 75 1201

    [17]

    Llovet X, Sorbier L, Campos C S, Acosta E, Salvat F 2003 J. Appl. Phys. 93 3844

    [18]

    Acosta E, Llovet X, Coleoni E, Riveros J A, Salvat F 1998 J. Appl. Phys. 83 6038

    [19]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. B 267 3495

    [20]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [21]

    An Z, Liu M T, Wu Y, Duan Y M 2006 Atomic Energy Science and Technology 40 84 (in Chinese) [安竹, 刘慢天, 吴英, 段艳敏 2006 原子能科学技术 40 84]

    [22]

    Gallagher W J, Cipolla S J 1974 Nucl. Instr. Meth. 122 405

  • [1]

    Acosta E, Llovet X, Salvat F 2002 Appl. Phys. Lett. 80 3228

    [2]

    Matsuyama M, Watanabe K, Hasegawa K {1998 Fusion Eng. Design 39 929

    [3]

    An Z, Hou Q, Long J J 2008 Nucl. Instr. Meth. B 266 3643

    [4]

    Tseng H K, Pratt R H 1971 Phys. Rev. A 3 100

    [5]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M 1977 At. Data Nucl. Data Tables 20 175

    [6]

    Pratt R H, Tseng H K, Lee C M, Kissel L, MacCallum C, Riley M {1981 Erratum 26 477

    [7]

    Kissel L, Quarles C A, Pratt R H 1983 At. Data Nucl. Data Tables 28 381

    [8]

    Seltzer S M, Berger M J 1985 Nucl. Instr. Meth. B 12 95

    [9]

    Seltzer S M, Berger M J 1986 At. Data Nucl. Data Tables 35 345

    [10]

    Shanker R 2006 Radiat. Phys. Chem. 75 1176

    [11]

    Portillo S, Quarles C A 2003 Phys. Rev. Lett. 91 173201

    [12]

    Quarles C A, Portillo S 2006 Radiat. Phys. Chem. 75 1187

    [13]

    Williams S, Quarles C A 2008 Phys. Rev. A 78 062704

    [14]

    Amrit Singh, Dhaliwal A S 2016 Radiat. Phys. Chem. 119 167

    [15]

    Salvat F, Fernndez-Varea J M, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank)

    [16]

    Salvat F, Fernndez-Varea J M, Sempau J, Llovet X 2006 Radiat. Phys. Chem. 75 1201

    [17]

    Llovet X, Sorbier L, Campos C S, Acosta E, Salvat F 2003 J. Appl. Phys. 93 3844

    [18]

    Acosta E, Llovet X, Coleoni E, Riveros J A, Salvat F 1998 J. Appl. Phys. 83 6038

    [19]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. B 267 3495

    [20]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [21]

    An Z, Liu M T, Wu Y, Duan Y M 2006 Atomic Energy Science and Technology 40 84 (in Chinese) [安竹, 刘慢天, 吴英, 段艳敏 2006 原子能科学技术 40 84]

    [22]

    Gallagher W J, Cipolla S J 1974 Nucl. Instr. Meth. 122 405

  • [1] Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng. Effect of amorphous carbon film on secondary electron emission of metal. Acta Physica Sinica, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] Wang Chao, Zhou Yan-Li, Wu Fan, Chen Ying-Cai. Monte Carlo simulation on the adsorption of polymer chains on polymer brushes. Acta Physica Sinica, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [3] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [4] Qing Shao-Wei, Li Mei, Li Meng-Jie, Zhou Rui, Wang Lei. Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall. Acta Physica Sinica, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [5] Zheng Hui, Zhang Chong-Hong, Chen Bo, Yang Yi-Tao, Lai Xin-Chun. Inhibition effect of low-temperature pre-irradiation of helium ions on the growth of helium bubble in stainless steel:a Monte Carlo simulation. Acta Physica Sinica, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [6] Zhou Yu-Lu, Li Ren-Shun, Zhang Bao-Ling, Deng Ai-Hong, Hou Qing. Monte Carlo simulations of the evolution of helium depth distribution in materials. Acta Physica Sinica, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [7] Gao Qian, Lou Xiao-Yan, Qi Yang, Shan Wen-Guang. Monte Carlo simulation on the property of ferromagnetic order of Zn1- x Mn x O Nanofilms. Acta Physica Sinica, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [8] Guo Bao-Zeng, Zhang Suo-Liang, Liu Xin. Electron transport property in wurtzite GaN at high electric field with Monte Carlo simulation. Acta Physica Sinica, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [9] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [10] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [11] Wei Xi-Ye, Li Quan-Feng, Yan Hui-Yong. Theoretical study on bremsstrahlung of high energy electrons. Acta Physica Sinica, 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [12] Zhang Lian-Zhu, Gao Shu-Xia. Effect of adding hydrogen to a nitrogen glow discharge on electron behavior. Acta Physica Sinica, 2006, 55(7): 3524-3530. doi: 10.7498/aps.55.3524
    [13] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [14] Gao Guo-Liang, Qian Chang-Ji, Zhong Rui, Luo Meng-Bo, Ye Gao-Xiang. Monte Carlo simulation of cluster growth on an inhomogeneous substrate. Acta Physica Sinica, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [15] Xiao Pei, Zhang Zeng-Ming, Sun Xia, Ding Ze-Jun. Monte Carlo simulation of electron transmission through masks in projection electron lithography. Acta Physica Sinica, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [16] Xu Miao-Hua, Liang Tian-Jiao, Zhang Jie. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions. Acta Physica Sinica, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [17] Jin Yi, Pan Bai-Liang, Chen Gang, Chen Kun, Yao Zhi-Xin. Numerical study on the terminating mechanisms of copper vapor laser pulse. Acta Physica Sinica, 2004, 53(6): 1799-1803. doi: 10.7498/aps.53.1799
    [18] Zhang Lian-Zhu. The role of ions(N+2) in the dissociation of nitrogen in a direct-current glow discharge. Acta Physica Sinica, 2003, 52(4): 920-924. doi: 10.7498/aps.52.920
    [19] DENG CHAO-YONG, ZHAO HUI, WANG YONG-SHENG. SPATIAL DISTRIBUTION OF ELECTRON ENERGY IN THIN FILM ELECTROLUMINESCENT DEVICES. Acta Physica Sinica, 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [20] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO SIMULATION OF ELECTRON TRANSPORT IN 6H-SiC. Acta Physica Sinica, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
Metrics
  • Abstract views:  5459
  • PDF Downloads:  221
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2015
  • Accepted Date:  19 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回