Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Localized surface plasmon resonance and the size effects of magneto-optic rods

Huang Zhi-Fang Ni Ya-Xian Sun Hua

Citation:

Localized surface plasmon resonance and the size effects of magneto-optic rods

Huang Zhi-Fang, Ni Ya-Xian, Sun Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Localized surface plasmon resonance of cylindrical magneto optical particles provides an important mechanism for the formation of chiral edge states in two-dimensional magneto-optical photonic crystals. These states are an electromagnetic analogy of the so-called chiral edge state's (CESs) in a quantum Hall system where the power transmission is unidirectional due to particular topological properties of the bands. Just like their electronic counterpart, the number of optical CESs in the band gap opened by an applied magnetic field is determined by the sum of the Chern numbers of the lower bands. For a two-dimensional photonic crystal composed of ferrite rods magnetized along their axis, the coupling of the localized surface plasmon resonance states of each rod results in a narrow flat band-gap, which contains one-way edge modes arising from the circulation of the energy flow around each rod excited by the resonance with broken time-reversal symmetry. So far the interpretation of the resonance-related chiral edge states are based on the long-wavelength approximation of the localized surface plasmon resonance of an individual magneto-optical particle. Though the results agree with the experimental results qualitatively, an obvious quantitative deviation is still obvious. In this work we apply the scattering theory to analyze the resonance condition and the features of both the far-field and the near-field at resonance for cylindrical magneto-optical particles. Our calculation shows that the splitting of scattering peaks of different orders will occur due to the magneto-optical effect. Such a split is observed between an (+n)-peak and an (-n) peak, as a sign of the broken time-reversal symmetry, and also between peaks of lower-order and higher-order. Another important feature is the simultaneous occurring of the far-field resonance and the near-field resonance, where the latter is characterized by a peak of energy-flow circulation around the particle. Based on this model the effects of particle size on the resonance peaks are discussed. It is shown that the resonance peaks are moved and broadened with the particle size increasing. The results explain the obvious deviation of the position of the resonance band-gap from the predicted frequency according to the previous long-wavelength approximation. Furthermore, the calculation of a particle of moderately-large size (nearly one-tenth of the incident wavelength) demonstrates the appearance of higher-order modes up to n=4 circling around the particle surface. This implies that these higher-order modes may also make non-trivial contribution to the formation of the flat band-gap observed in a photonic crystal of ferrite-rods and affect the behaviours of the chiral-edge state existing in such a gap. Particularly, it may be helpful in realizing the multimodes of chiral edge states in magneto-optical photonic crystals.
      Corresponding author: Sun Hua, hsun@suda.edu.cn
    • Funds: Supported by the Natural Science Foundation for the Youth of Jiangsu Province (Grant No. BK20130284).
    [1]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [2]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photo. 4 107

    [3]

    Liang H, Liu H, Zhang Q, Fu S F, Zhou S, Wang X Z 2015 Chin. Phys. B 24 067807

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [5]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [6]

    Poo Y, Wu R, Lin Z, Yang Y, Chan C T 2009 Phys. Rev. Lett. 106 093903

    [7]

    Fang K, Yu Z, Fan S 2011 Phys. Rev. B 84 075477

    [8]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [9]

    Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425

    [10]

    Lian J, Fu J X, Gan L, Li Z Y 2012 Phys. Rev. B 85 125108

    [11]

    Poo Y, Wu R, Liu S, Yang Y, Lin Z, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [12]

    Chui S T, Liu S, Lin Z 2013 Phys. Rev. B 88 031201

    [13]

    Chui S T, Lin Z 2014 Chin. Phys. B 23 117802

    [14]

    Fan X, Zheng W, Singh D J 2014 Light: Sci. Appl. 3 e179

    [15]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 物理学报 61 047802]

    [16]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [17]

    Zhu H, Yan Z D, Zhan P, Wang Z L 2013 Acta Phys. Sin. 62 178104 (in Chinese) [朱华, 颜振东, 詹鹏, 王振林 2013 物理学报 62 178104]

  • [1]

    Inoue M, Fujii T 1997 J. Appl. Phys. 81 5659

    [2]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photo. 4 107

    [3]

    Liang H, Liu H, Zhang Q, Fu S F, Zhou S, Wang X Z 2015 Chin. Phys. B 24 067807

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [5]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [6]

    Poo Y, Wu R, Lin Z, Yang Y, Chan C T 2009 Phys. Rev. Lett. 106 093903

    [7]

    Fang K, Yu Z, Fan S 2011 Phys. Rev. B 84 075477

    [8]

    Skirlo S A, Lu L, Soljacic M 2014 Phys. Rev. Lett. 113 113904

    [9]

    Liu S Y, Lu W L, Lin Z F, Chui S T 2011 Phys. Rev. B 84 045425

    [10]

    Lian J, Fu J X, Gan L, Li Z Y 2012 Phys. Rev. B 85 125108

    [11]

    Poo Y, Wu R, Liu S, Yang Y, Lin Z, Chui S T 2012 Appl. Phys. Lett. 101 081912

    [12]

    Chui S T, Liu S, Lin Z 2013 Phys. Rev. B 88 031201

    [13]

    Chui S T, Lin Z 2014 Chin. Phys. B 23 117802

    [14]

    Fan X, Zheng W, Singh D J 2014 Light: Sci. Appl. 3 e179

    [15]

    Cong C, Wu D J, Liu X J 2012 Acta Phys. Sin. 61 047802 (in Chinese) [丛超, 吴大建, 刘晓峻 2012 物理学报 61 047802]

    [16]

    Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys. Sin. 61 097805 (in Chinese) [邹伟博, 周骏, 金理, 张昊鹏 2012 物理学报 61 097805]

    [17]

    Zhu H, Yan Z D, Zhan P, Wang Z L 2013 Acta Phys. Sin. 62 178104 (in Chinese) [朱华, 颜振东, 詹鹏, 王振林 2013 物理学报 62 178104]

  • [1] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [2] Liu Liang, Han De-Zhuan, Shi Lei. Plasmonic band structures and its applications. Acta Physica Sinica, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [3] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [4] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [5] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [6] Wang Shan-Jiang, Su Dan, Zhang Tong. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [7] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [8] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [9] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [10] Li Chang-Sheng. Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor. Acta Physica Sinica, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [11] Zhou Wen, Chen He-Ming. Mode division multiplexing of two-dimensional triangular lattice photonic crystal based on magneto-optical effect. Acta Physica Sinica, 2015, 64(6): 064210. doi: 10.7498/aps.64.064210
    [12] Zhao Qiu-Ling, Lü Hao, Zhang Qing-yue, Niu Dong-jie, Wang Xia. Lasing in dye-doped photonic crystals at the edge of fluorescence band gaps. Acta Physica Sinica, 2013, 62(4): 044208. doi: 10.7498/aps.62.044208
    [13] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [14] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan. Numerical analysis of two-dimensional magnetophotonic crystals with structural defects. Acta Physica Sinica, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [15] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [16] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [17] Zhang Hao, Zhao Jian-Lin, Zhang Xiao-Juan, Di Nan. Two-dimensional magnetophotonic crystals and analysis of the mode field. Acta Physica Sinica, 2007, 56(6): 3546-3552. doi: 10.7498/aps.56.3546
    [18] Zhang Guo-Ying, Cheng Yong, Zhang Xue-Long, Xia Tian, Xue Liu-Ping. Effect of Pb, Ga doping on magneto-optical propertics of Ce:YIG crystal. Acta Physica Sinica, 2006, 55(5): 2601-2605. doi: 10.7498/aps.55.2601
    [19] Zhang Guo-Ying, Xia Tian, Cheng Yong, Xue Liu-Ping, Zhang Xue-Long. Role of exchange interaction in the magnetic and magneto-optic properties of CeF3 crystal. Acta Physica Sinica, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [20] Wen Xiao-Wen, Li Guo-Jun, Qiu Gao-Xin, Li Yong-Ping, Ding Lei, Sui Zhan. One-dimensional magneto optical multi-layer film isolator with multi-defect. Acta Physica Sinica, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
Metrics
  • Abstract views:  6018
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2015
  • Accepted Date:  10 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回