Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On-chip fabrication of lateral growth ZnO nanowire array UV sensor

Li Jiang-Jiang Gao Zhi-Yuan Xue Xiao-Wei Li Hui-Min Deng Jun Cui Bi-Feng Zou De-Shu

Citation:

On-chip fabrication of lateral growth ZnO nanowire array UV sensor

Li Jiang-Jiang, Gao Zhi-Yuan, Xue Xiao-Wei, Li Hui-Min, Deng Jun, Cui Bi-Feng, Zou De-Shu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we integrate nano technology into traditional microelectronic processing, and develop an on-chip UV sensor based on lateral growth ZnO nanowire arrays. Traditional procedures are used to fabricate the interdigital electrodes, and ZnO nanowires are self-organized and grown between electrodes laterally by hydrothermal method. Additional inclined nanowires are removed during the post-processing procedures, such as ultrasound cleansing and electrode reinforcement. Two kinds of electrode structures are applied, i.e., Cr and Au. For the Cr electrode device structure, because Cr will restrain nanowires from growing vertically on its top, the laterally grown nanowire is long enough to reach the other side of the electrode. The corresponding photoelectric response mechanism is photoconduction controlled by surface oxide ion adsorption. Although the photocurrent is large, the gain is low, and the response speed is slow. Under the UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 2.210-4 A with 1 V bias voltage, the gain is up to 64, the photocurrent cannot reach saturation after 25 s, and the recovery time is 51.9 s. A secondary electrode can be fabricated after growing the nanowire arrays to reinforce the connection between the electrode and the ends of the nanowires. However, the direct contact between metal and semiconductor will form a Schottky contact. The photoelectric response mechanism is then changed to photovoltaic effect, which can greatly improve the gain and response speed. Under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 4.310-8 A with 1 V bias voltage, the gain is up to 1300, the respond time is 3.8 s, and the recovery time is 5.7 s. For the Au electrode device structure, because Au is catalysis for ZnO nanowire growth, nanowires grown in lateral direction will compete with those grown in vertical direction, and hence the laterally grown nanowires are not long enough to reach the other side of the electrode. Nanowires grown from two sides of the electrodes will meet each other and form a bridging junction, however, this will turn the photoconduction mechanism from surface ion controlled into a bridging junction controlled, which yields the best device performance. Before removing the inclined nanowires by ultrasound cleansing, under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 8.310-3 A with 1 V bias voltage, the gain is up to 1350, the respond time is 3.3 s, and the recovery time is 3.4 s. After removing the inclined nanowires, under UV radiations of 20 mW/cm2 and of 365 nm in wavelength, the dark current is 10-9 A with 1 V bias voltage, the gain is up to 8105, the respond time is 1.1 s, and the recovery time is 1.3 s.
      Corresponding author: Gao Zhi-Yuan, zygao@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204009), the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005), and the Research Base Construction-Science and Technology Innovation Platform-Environmental Air Quality Monitoring and Big Data Processing, China(Grant No. JJ002790201502).
    [1]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申徳振 2012 物理学报 61 052901]

    [2]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators, A. 174 43

    [3]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [4]

    Zhou J, Gu Y, Hu Y, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [5]

    Bai S 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [白所 2014 博士学位论文 (兰州: 兰州大学)]

    [6]

    Konenkamp R, Word R C, Schlegel C 2004 Appl. Phys. Lett. 85 6004

    [7]

    Sun X W, Huang J Z, Wang J X, Xu Z 2008 Nano Lett. 8 1219

    [8]

    Park W I, Yi G C 2004 Adv. Mater. 16 87

    [9]

    Bai S, Wu W, Qin Y, Cui N Y, Bayerl D J, Wang X D 2011 Adv. Funct. Mater. 21 4464

    [10]

    Wu W, Bai S, Cui N, Ma F, Wei Z Y, Qin Y, Xie E Q 2010 Sci. Adv. Mater. 2 402

    [11]

    Kang J, Myung S, Kim B, Dong J, Kim G T, Hong S {2008 Nano Technol. 19 0953039

    [12]

    Dong L F, Bush J, Chirayos V, Solanki R, Jiao J, One Y, Conley Jr J F, Ulrich B D 2005 Nano Lett. 5 2112

    [13]

    Li Y, Della Valle F, Simonnet M, Yamada L, Delaunay J J {2009 Nano Technol. 20 0455014

    [14]

    Qin Y, Yang R, Wang Z L 2008 J. Phys. Chem. C 112 18734

    [15]

    Alenezi M R, Henley S J, Silva S R P 2015 Sci. Rep. 5 8516

    [16]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [17]

    Liu N, Fang G, Zeng W, Long H, Fan X, Yuan L Y, Zou X, Liu Y P, Zhao X Z 2010 J. Phys. Chem. C 114 8575

  • [1]

    Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z, Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese) [宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申徳振 2012 物理学报 61 052901]

    [2]

    Lang Y, Gao H, Jiang W, Xu L L, Hou H T 2012 Sens. Actuators, A. 174 43

    [3]

    Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, Wang D 2007 Nano Lett. 7 1003

    [4]

    Zhou J, Gu Y, Hu Y, Mai W J, Yeh P H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103

    [5]

    Bai S 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [白所 2014 博士学位论文 (兰州: 兰州大学)]

    [6]

    Konenkamp R, Word R C, Schlegel C 2004 Appl. Phys. Lett. 85 6004

    [7]

    Sun X W, Huang J Z, Wang J X, Xu Z 2008 Nano Lett. 8 1219

    [8]

    Park W I, Yi G C 2004 Adv. Mater. 16 87

    [9]

    Bai S, Wu W, Qin Y, Cui N Y, Bayerl D J, Wang X D 2011 Adv. Funct. Mater. 21 4464

    [10]

    Wu W, Bai S, Cui N, Ma F, Wei Z Y, Qin Y, Xie E Q 2010 Sci. Adv. Mater. 2 402

    [11]

    Kang J, Myung S, Kim B, Dong J, Kim G T, Hong S {2008 Nano Technol. 19 0953039

    [12]

    Dong L F, Bush J, Chirayos V, Solanki R, Jiao J, One Y, Conley Jr J F, Ulrich B D 2005 Nano Lett. 5 2112

    [13]

    Li Y, Della Valle F, Simonnet M, Yamada L, Delaunay J J {2009 Nano Technol. 20 0455014

    [14]

    Qin Y, Yang R, Wang Z L 2008 J. Phys. Chem. C 112 18734

    [15]

    Alenezi M R, Henley S J, Silva S R P 2015 Sci. Rep. 5 8516

    [16]

    Wang X D, Summers C J, Wang Z L 2004 Nano Lett. 4 423

    [17]

    Liu N, Fang G, Zeng W, Long H, Fan X, Yuan L Y, Zou X, Liu Y P, Zhao X Z 2010 J. Phys. Chem. C 114 8575

  • [1] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [3] Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun. Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate. Acta Physica Sinica, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [4] Wang Shun-Li, Wang Ya-Chao, Guo Dao-You, Li Chao-Rong, Liu Ai-Ping. NiO/GaN p-n junction ultraviolet photodetector and self-powered technology. Acta Physica Sinica, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [5] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [6] Li Gao-Fang, Ma Guo-Hong, Ma Hong, Chu Feng-Hong, Cui Hao-Yang, Liu Wei-Jing, Song Xiao-Jun, Jiang You-Hua, Huang Zhi-Ming, Chu Jun-Hao. Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy. Acta Physica Sinica, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [7] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [8] Qi Jun-Jie, Xu Min-Xuan, Hu Xiao-Feng, Zhang Yue. Frabrication and properties of self-powered ultraviolet detectors based on one-demensional ZnO nanomaterials. Acta Physica Sinica, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [9] Xue Zhen-Jie, Li Kui-Ying, Sun Zhen-Ping. Carrier transport characteristics in CdSe/CdS/Thioglycolic acid ligand quantum dots with a core-shell structure. Acta Physica Sinica, 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [10] Song Zhi-Ming, Zhao Dong-Xu, Guo Zhen, Li Bin-Hui, Zhang Zhen-Zhong, Shen De-Zhen. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors. Acta Physica Sinica, 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [11] Jiao Wei, Lei Yan-Lian, Zhang Qiao-Ming, Liu Ya-Li, Chen Lin, You Yin-Tao, Xiong Zu-Hong. Light-induced magnetoconductance effect in organic light-emitting diodes. Acta Physica Sinica, 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [12] Zhao De-Gang, Zhou Mei. A new method to measure the carrier concentration of p-GaN. Acta Physica Sinica, 2011, 60(3): 037804. doi: 10.7498/aps.60.037804
    [13] Zhou Mei, Zhao De-Gang. A new p-n structure ultraviolet photodetector with p--GaN active region. Acta Physica Sinica, 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [14] Zhang Shuang, Zhao De-Gang, Liu Zong-Shun, Zhu Jian-Jun, Zhang Shu-Ming, Wang Yu-Tian, Duan Li-Hong, Liu Wen-Bao, Jiang De-Sheng, Yang Hui. Influence of penetrating V-pits on leakage current of GaN based p-i-n UV detector. Acta Physica Sinica, 2009, 58(11): 7952-7957. doi: 10.7498/aps.58.7952
    [15] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [16] Zhou Mei, Chang Qing-Ying, Zhao De-Gang. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [17] Zhou Mei, Zuo Shu-Hua, Zhao De-Gang. A new Schottky barrier structure of GaN-based ultraviolet photodetector. Acta Physica Sinica, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [18] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [19] Xie Zi-Li, Zhang Rong, Xiu Xiang-Qian, Han Ping, Liu Bin, Chen Lin, Yu Hui-Qiang, Jiang Ruo-Lian, Shi Yi, Zheng You-Dou. MOCVD growth and characteristics of high quality AlGaN used in the DBR structure of ultraviolet detector. Acta Physica Sinica, 2007, 56(11): 6717-6721. doi: 10.7498/aps.56.6717
    [20] Zhou Yong-Hua, Zhang Yi-Men, Zhang Yu-Ming, Meng Xiang-Zhi. Simulation and analysis of 6H-SiC pn junction ultraviolet photodetector. Acta Physica Sinica, 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
Metrics
  • Abstract views:  4819
  • PDF Downloads:  270
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2016
  • Accepted Date:  01 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回