Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering

Wang Dang-Hui Xu Tian-Han Song Hai-Yang

Citation:

Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering

Wang Dang-Hui, Xu Tian-Han, Song Hai-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • III-nitride materials have attracted considerable attention in the last decade due to their wide applications in solidstate light devices with their direct wide band-gaps and higher quantum efficiencies. InGaN/GaN multiple quantum well is important active region for light-emitting diode, which can be tuned according to indium composition in the InxGa1-xN alloy system. Owing to difficulty in fabricating bulk materials, GaN thin films are heteroepitaxially grown on latticemismatched and thermal-expansion-mismatched substrates, such as sapphire (Al2O3), Si and SiC, which subsequently results in a mass of threading dislocations and higher residual strains. On the one hand, dislocations and defects existing in GaN epifilms trap the carriers as scattering centers in the radiative recombination process between electrons and holes, and play an important role in drooping the internal quantum efficiency. On the other hand, higher built-in electric field induced by residual strains existing in GaN epifilm could make the emission wavelength red-shifted.It is common knowledge that temperature is one of the important factors in the growth process of epitaxial films, as a result, further research on thermal expansion behaviors is needed. Based on the above analysis, an in-depth study of thermal expansion behavior of wurtzite GaN epitaxial film is of vital importance both in theory and in application.In this study, we investigate the thermal expansion behaviors of wurtzite GaN epitaxial films by using temperaturedependent Raman scattering in a temperature range from 83 K to 503 K. According to the physical implication, Gruneisen parameter is almost a constant (Gruneisen parameters of all phonon modes are in a range between 1 to 2 for GaN) that characterizes the relationship between the phonon shift and the volume of a solid-state material. More importantly, Gruneisen parameter is relatively insensitive to temperature and suitable for building the connection between the phonon shift and thermal expansion coefficient. Therefore, the linear relationship between the phonon shift and temperature is built and utilized to calculate the thermal expansion coefficient according to the physical implication of the Gruneisen parameter. Conclusions can be obtained as follows. (1) The thermal expansion coefficient of GaN epifilm can be calculated in a certain temperature range by measuring the phonon modes of E2 (high), A1 (TO) and E1 (TO) through using temperature-dependent Raman scattering when the corresponding Gruneisen parameters are determined. (2) The calculated thermal expansion coefficients of GaN epifilm are consistent with the theoretical values.Conclusions and methods in this paper provide an effective quantitative analysis method to characterize the thermal expansion behaviors of other III-nitride epitaxial thin films, such as AlN, InN, AlGaN, InGaN, InAlN etc., which can be of benefit to reducing the dislocation density and improving the luminescence efficiency of light emitting diode. Therefore, research on thermal expansion behaviors of epifilms using temperature-dependent Raman scattering has a direction for further studying the latter-mismatch and thermal-expansion-mismatch between the epitaxial film and substrate.
      Corresponding author: Wang Dang-Hui, wdhyxp@163.com
    • Funds: Project supported by National Science Foundation of Shaanxi Province, China (Grant No. 2015JM6327), Youth Science and Technology Innovation Fund of Xian ShiYou University, China (Grant No. Z14086), and Key Subject of Materials Processing Engineering of Shaanxi Province, China (Grant No. YS32030203).
    [1]

    Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851

    [2]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [3]

    Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457

    [4]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [5]

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701]

    [6]

    Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311

    [7]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [8]

    Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314

    [9]

    Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125

    [10]

    Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103

    [11]

    Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905

    [12]

    Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51

    [13]

    Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009

    [14]

    Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761

    [15]

    Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162

    [16]

    Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51

    [17]

    James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101

    [18]

    Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83

    [19]

    Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516

    [20]

    Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936

    [21]

    Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

  • [1]

    Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851

    [2]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [3]

    Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457

    [4]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [5]

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701]

    [6]

    Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311

    [7]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [8]

    Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314

    [9]

    Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125

    [10]

    Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103

    [11]

    Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905

    [12]

    Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51

    [13]

    Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009

    [14]

    Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761

    [15]

    Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162

    [16]

    Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51

    [17]

    James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101

    [18]

    Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83

    [19]

    Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516

    [20]

    Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936

    [21]

    Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

  • [1] Xiong Pei-Yu, Ni Zhuang, Lin Ze-Feng, Bai Xin-Bo, Liu Tian-Xiang, Zhang Xiang-Yu, Yuan Jie, Wang Xu, Shi Jing, Jin Kui. Composition-spread epitaxial ferroelectric thin films for temperature-insensitive functional devices. Acta Physica Sinica, 2023, 72(9): 097701. doi: 10.7498/aps.72.20230154
    [2] Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing. Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite. Acta Physica Sinica, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] Liao Qing, Li Bing-Sheng, Ge Fang-Fang, Zhang Hong-Peng, Shen Tie-Long, Mao Xue-Li, Wang Ren-Da, Sheng Yan-Bin, Chang Hai-Long, Wang Zhi-Guang, Xu Shuai, Chen Li-Ming, He Xiao-Xun. Stability and corrosion behavior of AlOx coating on T91 steel and SIMP steel in static liquid Pb-Bi eutectic at 600 ℃. Acta Physica Sinica, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [4] Jiang Beng, Chen Si-Liang, Cui Xiao-Lei, Hu Zi-Ting, Li Yue, Zhang Xiao-Zheng, Wu Kang-Jing, Wang Wen-Zhen, Jiang Zui-Min, Hong Feng, Ma Zhong-Quan, Zhao Lei, Xu Fei, Xu Run, Zhan Yi-Qiang. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film. Acta Physica Sinica, 2019, 68(24): 246801. doi: 10.7498/aps.68.20191238
    [5] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [6] Huang Bin-Bin, Xiong Chuan-Bing, Zhang Chao-Yu, Huang Ji-Feng, Wang Guang-Xu, Tang Ying-Wen, Quan Zhi-Jue, Xu Long-Quan, Zhang Meng, Wang Li, Fang Wen-Qing, Liu Jun-Lin, Jiang Feng-Yi. Electroluminescence properties of vertical structure GaN based LED on silicon and copper submount at different temperatures and current densities. Acta Physica Sinica, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [7] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [8] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] Tang Zheng-Xia, Shen Hong-Lie, Jiang Feng, Fang Ru, Lu Lin-Feng, Huang Hai-Bin, Cai Hong. Mechanism of large grain polycrystalline Si preparation by aluminum induced crystallization with temperature gradient profile. Acta Physica Sinica, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [10] Liu Fu-Sheng, Chen Xian-Peng, Xie Hua-Xing, Ao Wei-Qin, Li Jun-Qin. Negative thermal expansion of Sc2-xGaxW3O12 solid solution. Acta Physica Sinica, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [11] Sui Cheng-Hua, Cai Ping-Gen, Chen Nai-Bo, Wei Gao-Yao, Xu Xiao-Jun, Zhou Hong. The temperature-dependent optical properties of ZnO film deposited on sapphire fiber-ending. Acta Physica Sinica, 2009, 58(4): 2792-2796. doi: 10.7498/aps.58.2792
    [12] Yue Fang-Yu, Shao Jun, Wei Yan-Feng, Lü Xiang, Huang Wei, Yang Jian-Rong, Chu Jun-Hao. Temperature-dependent absorption spectra investigation of shallow levels in HgCdTe grown by liquid phase epitaxy. Acta Physica Sinica, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [13] Wang Rui-Min, Chen Guang-De, Zhu You-Zhang. Micro-Raman scattering study of hexagonal InGaN epitaxial layer. Acta Physica Sinica, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [14] Wang Qing-Xue, Yang Jian-Rong, Sun Tao, Wei Yan-Feng, Fang Wei-Zheng, He Li. Relationship between lattice parameters and compositions of molecular beam epitaxial Hg1-xCdxTe films. Acta Physica Sinica, 2005, 54(8): 3726-3733. doi: 10.7498/aps.54.3726
    [15] Zou Jun, Zhang Lian-Han, Zhou Sheng-Ming, Xu Jun, Han Ping, Zhang Rong. Study on the growth, modification and thermal properties of γ-LiAlO2 single crystals. Acta Physica Sinica, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [16] YUE LAN-PING, HE YI-ZHEN. A STUDY OF THE RAMAN SCATTERING OF Ge NANOCRYSTALLITES EMBEDDED IN SiO2 THIN FILMS. Acta Physica Sinica, 1996, 45(10): 1756-1761. doi: 10.7498/aps.45.1756
    [17] YAN ZU-TONG, SUN ZHEN-HUA. THE PRESSURE DEPENDENCE OF THE EXPANSIVITY AND OF THE ANDERSON-GRüNEISEN PARAMETER IN THE GENERAL CONDITION. Acta Physica Sinica, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [18] RUAN YAO-ZHONG, LI LI-PING, HU XUE-LONG, PENG DING-KUN, HU JUN-BAO, ZHANG YU-HENG. THERMAL EXPANSION COEFFICIENT OF YBa2Cu3O7-x WITHORTHORHOMBIC AND TETRAGONAL PHASES. Acta Physica Sinica, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [19] RUAN YAO-ZHONG, LI LI-PING, WU ZHI-QIANG, HE PING-SHENG. THERMAL EXPANSION COEFFICIENTS OF POLYBIS-(P-TOLUENE SULFONATE) OF 2,4-HEXADIYNE-l,6-DIAL SINGLE CRYSTAL AT LOW TEMPERATURE. Acta Physica Sinica, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
    [20] GAO ZHAN-PENG. TEMPERATURE DEPENDENCE OF THEMAL EXPANSION COEFFICENT, BULK MODULUS AND GRüNEISEN PARAMENTRS OF SOLIDS. Acta Physica Sinica, 1981, 30(5): 679-685. doi: 10.7498/aps.30.679
Metrics
  • Abstract views:  4651
  • PDF Downloads:  195
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2016
  • Accepted Date:  01 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回