Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory study of structure stability and electronic structures of graphyne derivatives

Chi Bao-Qian Liu Yi Xu Jing-Cheng Qin Xu-Ming Sun Chen Bai Cheng-Hao Liu Yi-Fan Zhao Xin-Luo Li Xiao-Wu

Citation:

Density functional theory study of structure stability and electronic structures of graphyne derivatives

Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to the diversified atomic structures and electronic properties, two-dimensional monolayer nanocarbon materials (graphyne or graphdiyne) composed of sp and sp2 hybridization C atoms have received the widespread attention in recent years. The fundamental questions include how the sp orbital hybridization affects the electronic structure of graphyne. In order to investigate the structure dependent electronic structures of graphyne, the energetic stabilities and electronic structures of -graphyne and its derivatives (-N) with N carbon atoms on each edge of the hexagons are investigated by density functional theory (DFT) calculations in this work. In our DFT calculations we adopt generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBE) using the CASTEP module implemented in Materials Studio. The studied -Ns consist of hexagon carbon rings connected by vertexes whose edges have various numbers of carbon atoms N= 1-10. The structure and energy analyses show that -Ns with even-numbered carbon chains have alternating single and triple C-C bonds, energetically more stable than those with odd-numbered carbon chains possessing continuous C-C double bonds. The calculated electronic structures indicate that -Ns can be either metallic (odd N) or semiconductive (even N), depending on the parity of number of hexagon edge atoms regardless of the edge length due to Jahn-Teller distortion effect. Some semiconducting -graphyne derivatives (-N, N= 2, 6, 10) are found to possess Dirac cones (DC) with small direct band gaps 10 meV and large electron velocities 0.255106-0.414106 m/s, ~30%-50% of that of graphene. We find that Dirac cones also appear in -3 and -4 when we shorten the double bonds and elongate the triple bonds in -3 and -4 respectively. These results show that the bond length change will affect the characteristics of band structure and suggests that the band structure characteristics may be influenced by Peierls distortion in a two-dimensional system. Our DFT studies indicate that introducing sp carbon atoms into the hexagon edges of graphene opens the way to switching between metallic and semiconductor/DC electronic structures via tuning the parity of the number of hexagon edge atoms without doping and defects in nanocarbon materials and nanoelectronic devices.
      Corresponding author: Liu Yi, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn ; Li Xiao-Wu, yiliu@t.shu.edu.cn;xwli@mail.neu.edu.cn
    • Funds: Project supported by Shanghai Pujiang Talent Program (Grant No. 12PJ1406500), Shanghai High-tech Area of Innovative Science and Technology, China (Grant No. 14521100602), STCSM, Key Program of Innovative Scientific Research (Grant No. 14ZZ130), State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Grant No. SKLOP201402001), National Natural Science Foundation of China (Grant Nos. 10974131, 61240054, 51202137), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416500).
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [5]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [6]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 Acs Nano 3 3788

    [7]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 Acs Nano 7 10075

    [8]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [9]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [10]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [11]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [12]

    Diederich F 1994 Nature 369 199

    [13]

    Gholami M, Melin F, McDonald R, Ferguson M J, Echegoyen L, Tykwinski R R 2007 Angew. Chem. Int. Ed. 46 9081

    [14]

    Kehoe J M, Kiley J H, English J J, Johnson C A, Petersen R C, Haley M M 2000 Org. Lett. 2 969

    [15]

    Marsden J A, Haley M M 2005 J. Org. Chem. 70 10213

    [16]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [17]

    Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J 2011 J. Phys. Chem. C 115 2611

    [18]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [19]

    Chen J M, Xi J Y, Wang D, Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443

    [20]

    Long M Q, Tang L, Wang D, Li Y L, Shuai Z G 2011 Acs Nano 5 2593

    [21]

    Ajori S, Ansari R, Mirnezhad M 2013 Mater. Sci. Eng. A 561 34

    [22]

    Mirnezhad M, Ansari R, Rouhi H, Seifi M, Faghihnasiri M 2012 Solid State Commun. 152 1885

    [23]

    Jafarzadeh H, Roknabadi M R, Shahtahmasebi N, Behdani M 2015 Physica E 67 54

    [24]

    Lin Z Z, Wei Q, Zhu X 2014 Carbon 66 504

    [25]

    Zhou Y H, Tan S H, Chen K Q 2014 Org. Electron 15 3392

    [26]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [27]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [28]

    Huang C H, Zhang S L, Liu H B, Li Y J, Cui G L, Li Y L 2015 Nano Energy 11 481

    [29]

    Lee S H, Jhi S H 2015 Carbon 81 418

    [30]

    Liu Y, Liu W, Wang R G, Hao L F, Jiao W C 2014 Int. J. Hydrog. Energy 39 12757

    [31]

    Lu J L, Guo Y H, Zhang Y, Cao J X 2014 Int. J. Hydrog. Energy 39 17112

    [32]

    Wang Y S, Fei Yuan P, Li M, Fen Jiang W, Sun Q, Jia Y 2013 J. Solid State Chem. 197 323

    [33]

    Xu B, Lei X L, Liu G, Wu M S, Ouyang C Y 2014 Int. J. Hydrog. Energy 39 17104

    [34]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [35]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr 220 567

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [38]

    Kim B G, Choi H J 2012 Phys. Rev. B 86 5

    [39]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 Acs Nano 5 2964

    [40]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford)

    [41]

    Deacon R S, Chuang K C, Nicholas R J, Novoselov K S, Geim A K 2007 Phys. Rev. B 76 081406

    [42]

    Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P, Stormer H L 2007 Phys. Rev. Lett. 98 197403

  • [1] Wang Huan-Wen, Fu Bo, Shen Shun-Qing. Recent progress of transport theory in Dirac quantum materials. Acta Physica Sinica, 2023, 72(17): 177303. doi: 10.7498/aps.72.20230672
    [2] Tong Zan, Yang Yin-Li, Xu Jing, Liu Wei, Chen Liang. Theoretical study of helium separation performance of crown ether-graphane membranes. Acta Physica Sinica, 2023, 72(6): 068201. doi: 10.7498/aps.72.20222183
    [3] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [4] Qiu Zi-Heng, Ahmed Yousif Ghazal, Long Jin-You, Zhang Song. Theoretical studies on molecular conformers and infrared spectra of triethylamine. Acta Physica Sinica, 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [5] Zhao Jia-Lin, Cheng Kai, Yu Xue-Ke, Zhao Ji-Jun, Su Yan. Theoretical research of time-dependent density functional on initiated photo-dissociation of some typical energetic materials at excited state. Acta Physica Sinica, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [6] Xu Qiang, Si Xue, She Wei-Han, Yang Guang-Min. Density functional theory study of supercapacitor for energy storage electrode materials. Acta Physica Sinica, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [7] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [8] Yang Jun-Tao, Xiong Yong-Chen, Huang Hai-Ming, Luo Shi-Jun. Half-metallic magnetism and electronic structures of CrPSe3 monolayers with multiple Dirac cones(withdraw). Acta Physica Sinica, 2020, 69(24): 247101. doi: 10.7498/aps.69.20200960
    [9] Wang Tian-Hui, Li Ang, Han Bai. First-principles study of graphyne/graphene heterostructure resonant tunneling nano-transistors. Acta Physica Sinica, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [10] Cai Meng-Yuan, Tang Chun-Mei, Zhang Qiu-Yue. Optimized Li storage performance of B, N doped graphyne as Li-ion battery anode materials. Acta Physica Sinica, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [11] Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte. Acta Physica Sinica, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [12] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] Huang Xue-Qin, Chan Che-Ting. Dirac-like cones at k=0. Acta Physica Sinica, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [14] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [15] Fang Zhi-Jie, Mo Man, Zhu Ji-Zhen, Yang Hao. Density functional theory study on transparent conductive oxide CuScO2. Acta Physica Sinica, 2012, 61(22): 227401. doi: 10.7498/aps.61.227401
    [16] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [17] Liu Fu, Zhou Ji-Cheng, Tan Xiao-Chao. First-principles study on 3C-SiC(001)-(2×1)surface atomic structure and electronic structure. Acta Physica Sinica, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [18] Ge Gui-Xian, Luo You-Hua. Density functional theory study of the structure and electronic properties of MgnOn(n=2—8) clusters. Acta Physica Sinica, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [19] Bai Yu-Jie, Fu Shi-You, Deng Kai-Ming, Tang Chun-Mei, Chen Xuan, Tan Wei-Shi, Liu Yu-Zhen, Huang De-Cai. Density functional calculations on the geometric and electronic structures of the endohedral fullerene H2@C60 and its dimmer. Acta Physica Sinica, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [20] Ma Bing-Xian, Yao Ning, Yang Shi-E, Lu Zhan-Ling, Fan Zhi-Qin, Zhang Bing-Lin. Influence of hydrogen-enhanced etching on the quality of diamond films and the existing form of sp2 bonding carbon atoms. Acta Physica Sinica, 2004, 53(7): 2287-2291. doi: 10.7498/aps.53.2287
Metrics
  • Abstract views:  5436
  • PDF Downloads:  818
  • Cited By: 0
Publishing process
  • Received Date:  26 February 2016
  • Accepted Date:  18 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回