Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna

Zhang Chen Cao Xiang-Yu Gao Jun Li Si-Jia Zheng Yue-Jun

Citation:

Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna

Zhang Chen, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zheng Yue-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The demands for highly directive antennas are becoming more stringent, especially in microwave regions. Traditional ways to enhance the antenna gain such as reflectors, dielectric lenses, waveguide horns and microstrip antenna arrays suffer design complexity, high cost and power loss in the feeding network, so it is urgent to find a simple way to solve the problem. Fabry-Perot (F-P) antenna has a high directivity and low sidewall, owing to the resonance of the cavity in a cophasal and tapered field distribution along the lateral direction. However, the disadvantage of F-P antenna is obvious for the inherently narrow gain bandwidth which inhibits their many applications. In this paper, a broadband and high-gain shared-aperture F-P resonator magneto-electric (ME) microstrip antenna working at X band is designed and fabricated. In order to design a wideband metamaterial superstrate unit, the structure with two different frequency selective surface (FSS) layers is presented: the metal pattern at the top of the unit is a square patch and has a high reflection coefficient in the high frequency band, and at the bottom the metal pattern is a cross patch, it has a high reflection coefficient in the low frequency band, therefore, the whole unit should resonate in a broadband frequency range. Theoretical analysis and simulation result indicate that the unit has a linearly increasing phase response and a high reflection coefficient across a broadband range and it has the potential to construct a wideband F-P resonator antenna. In the proposed antenna, a novel wideband ME microstrip antenna is used as the feeding source. For the antenna covers the whole X band, the bandwidth of the F-P resonator superstrate should be further expanded. Simulated calculation results indicate that different sizes of two-layer FSSs have different reflection phases but the same coefficient, therefore a shared-aperture structure with three different sizes of FSSs is obtained. The arrangement utilizes the phase compensation property along different FSSs, and broadens the gain enhancement bandwidth effectively. When the superstrate is set to be approximately 15.5 mm above the ground plane of the ME antenna, the antenna possesses an impedance bandwidth of 44.7% for the reflection coefficient (S11) below -10 dB from 7.8 GHz to 12.3 GHz, covering the whole X band. From 7.9 GHz to 12.1 GHz, the antenna has an obvious gain enhancement, with a peak of 7 dB. Numerical and experimental results indicate that compared with the traditional F-P resonator structure, the shared-aperture metamaterial superstrate can effectively broaden the antenna gain enhancement bandwidth, and it has great application values for designing new broadband metamaterial superstrate high-gain antennas.
      Corresponding author: Cao Xiang-Yu, gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271100, 61471389, 61501494).
    [1]

    Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850

    [2]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]

    [3]

    Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405

    [4]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [7]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [10]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [11]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [12]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [13]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [14]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [15]

    Trentini G V 1956 IRE Trans. 4 666

    [16]

    Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229

    [17]

    Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3

    [18]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743

    [19]

    Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898

    [20]

    Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422

    [21]

    Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209

    [22]

    Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907

    [23]

    Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979

    [24]

    Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522

    [25]

    Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463

    [26]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [27]

    Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198

  • [1]

    Qu S W 2012 IEEE Antennas Wireless Propaga. Lett. 11 850

    [2]

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋荣, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]

    [3]

    Sun Y Z, Ran L X, Peng L, Wang W G, Li T, Zhao X, Chen Q L 2009 Chin. Phys. B 18 017405

    [4]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494

    [5]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [6]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [7]

    Li S J, Gao J, Cao X Y, Li W Q, Zhang Z, Zhang D 2014 J. Appl. Phys. 116 043710

    [8]

    Landy N I, Sajuyigbe S, Mock J J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [10]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [11]

    Singh R, Plum E, Zhang W, Zheludev N I 2010 Opt. Express 18 13425

    [12]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 88 165116

    [13]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [14]

    Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101

    [15]

    Trentini G V 1956 IRE Trans. 4 666

    [16]

    Wang N Z, Li J Z, Wei G, Talbi L, Zeng Q S, Xu J D 2015 IEEE Antennas Wireless Propaga. Lett. 14 229

    [17]

    Wang T T, Ge Y X, Chang J H, Wang M 2016 IEEE Pho. Technol. Lett. 28 3

    [18]

    Ge Y H, Esselle K P, Bird T S 2012 IEEE Trans. Antennas Propag. 60 743

    [19]

    Al-Tarifi M A, Anagnostou D E, Amert A K, Whites K W 2013 IEEE Trans. Antennas Propag. 61 1898

    [20]

    Vettikalladi H, Lafond O, Himdi M 2009 IEEE Antennas Wireless Propag. Lett. 8 1422

    [21]

    Feresidis A P, Goussetis S, Wang S, Vardaxoglou J C 2005 IEEE Trans. Antennas Propag. 53 209

    [22]

    Muhammad S A, Sauleau R, Coq L, Legay H 2011 IEEE Antennas Wireless Propag. Lett. 10 907

    [23]

    Gardelli R, Albani M, Capolino F 2006 IEEE Trans. Antennas Propag. 54 1979

    [24]

    Zeb B A, Ge Y H, Esselle K P, Sun Z, Tobar M E 2012 IEEE Trans. Antennas Propag. 60 4522

    [25]

    Wang N Z, Liu Q, Wu C Y, Talbi L, Zeng Q S, Xu J D 2014 IEEE Trans. Antennas Propag. 62 2463

    [26]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [27]

    Weily A R, Esselle K P, Bird T S, Sanders B C 2007 IET Microw. Antennas Propag. 1 198

  • [1] Lü Xiao-Long, Lu Hao-Ran, Guo Yun-Sheng. Broadband and high transmission of Mie-resonance-coupled subwavelength metal aperture. Acta Physica Sinica, 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [2] Yan Hao-Nan, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Li Tong. Wide-angle scanning linear phased arrays based on wide-beam magneto electric dipole antenna. Acta Physica Sinica, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [3] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [4] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [5] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [6] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [7] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [8] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [9] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [10] Yuan Zi-Dong, Gao Jun, Cao Xiang-Yu, Yang Huan-Huan, Yang Qun, Li Wen-Qiang, Shang Kai. A novel frequency selective surface with stable performance and its application in microstrip antenna. Acta Physica Sinica, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [11] Zhao Yi, Cao Xiang-Yu, Zhang Di, Yao Xu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang. Design of high-gain broadband low-RCS waveguide slot antenna. Acta Physica Sinica, 2014, 63(3): 034101. doi: 10.7498/aps.63.034101
    [12] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [13] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [15] Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng. Terahertz broadband antireflection photonic device with graded refractive indices. Acta Physica Sinica, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [16] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [17] Wang Zheng, Zhao Xin-Jie, He Ming, Zhou Tie-Ge, Yue Hong-Wei, Yan Shao-Lin. Simulations of impedance matching and phase locking of Josephson junction arrays embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [18] Yue Hong-Wei, Yan Shao-Lin, Zhou Tie-Ge, Xie Qing-Lian, You Feng, Wang Zheng, He Ming, Zhao Xin-Jie, Fang Lan, Yang Yang, Wang Fu-Yin, Tao Wei-Wei. Millimeter wave irradiation characteristics of high temperature superconductor bicrystal Josephson junction embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [19] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [20] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
Metrics
  • Abstract views:  5453
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  25 January 2016
  • Accepted Date:  16 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回