Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system

Zhang Xing Zhang Yi Zhang Jian-Wei Zhang Jian Zhong Chu-Yu Huang You-Wen Ning Yong-Qiang Gu Si-Hong Wang Li-Jun

Citation:

894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system

Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this study, an 894 nm high temperature vertical-cavity surface-emitting laser (VCSEL) is reported. Furthermore, a Cs chip-scale atomic clock (CSAC) system experiment based on this VCSEL is carried out.To achieve low threshold/power consumption under high temperature condition, the VCSEL epitaxial structure is optimized. Especially, the so-called gain cavity-mode detuning technology is utilized to improve the temperature sensitivity of the device output characteristics. The relationship between the structure of quantum well and the gain is simulated by using the commercial software PICS3D. In order to achieve high gain and low threshold properties, the thickness of the quantum well is optimized. Based on the theory of transmission matrix, the VCSEL cavity mode (etalon) is calculated. Finally, a -15 nm quantum well gain-cavity mode offset is utilized to achieve relatively stable cavity mode gain, which can guarantee the temperature-insensitivity of the VCSEL output characteristics.The output performance of the VCSEL device we fabricated is investigated experimentally. The VCSEL lightcurrent (L-I) characteristic is tested under different temperatures. It is found that benefiting from the gain-cavity mode offset design, the threshold can be maintained at 0.200.23 mA when the temperature increases from 20 ℃ to 90 ℃. Meantime, the output power of more than 100 W is achieved at different temperature levels. By comparing with the results at room temperature, No dramatic degradation of the VCSEL high temperature L-I characteristics is found, which means that the VCSEL output characteristic is relatively temperature-insensitive. The wavelength of the VCSEL is 890.4 nm at a temperature of 20 ℃. When the temperature increases up to 85.6 ℃, the VCSEL wavelength is red-shifted to 894.6 nm (Cs D1 line), corresponding to a red shift ratio of 0.064 nm/℃. According to the polarization requirement of CSAC applications, the polarization properties of the VCSEL are studied and the results are as follows: under an injected current of 1 mA and operation temperature of 20 ℃, Pmax = 278.2 W and Pmin = 5.9 W, corresponding to a polarization ratio of 47:1; at a temperature of 85.6 ℃, Pmax = 239.2 W and Pmin = 4 W, corresponding to a polarization ratio of 59:8:1.Using the VCSEL reported in this paper as a laser source, the CSAC experiment is carried out. At 4.596 GHz of modulated frequency, the output laser of the VCSEL is collimated and interacts with Cs atoms. Finally the closed-loop frequency locking atomic clock is demonstrated. The Cs laser absorption spectrum for laser frequency stabilization, as well as the CPT signal for Cs CSAC microwave frequency stabilization is obtained.
      Corresponding author: Zhang Jian-Wei, zjw1985@ciomp.ac.cn ; Zhang Jian, zjw1985@ciomp.ac.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 61434005, 61474118, 11304362), National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (Grant No. 2014ZX04001151), Jilin Scientific and Technological Development Program, China (Grant Nos. 20150203011GX, 20140101203JC), and Changchun Science and Technology Project, China (Grant Nos. 14KG006, 15SS02, 13KG22).
    [1]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [2]

    Choquette K D, Hou H Q 1997 Proc. IEEE 85 1730

    [3]

    Koyama F 2008 Proc. SPIE 7135 71350J

    [4]

    Fryslie S T M, Choquette K D 2015 IEEE Photon. J. 7 1

    [5]

    Guan B L, Liu X, Jiang X W, Liu C, Xu C 2015 Acta Phys. Sin. 64 164203 (in Chinese) [关宝璐, 刘欣, 江孝伟, 刘储, 徐晨 2015 物理学报 64 164203]

    [6]

    Larsson A 2011 IEEE J. Select. Top. Quantum. Electron. 17 1552

    [7]

    Crowley M T, Kovanis V, Lester L F 2012 IEEE Photon. J. 4 565

    [8]

    Jensen J B, Rodes R, Caballero A, Ning C, Zibar D, Monroy I T 2014 IEEE/OSA J. Lightwave Tech. 32 1423

    [9]

    Nguyen C T 2007 IEEE Tran. Ultrason. Ferro. Freq. Control 54 251

    [10]

    Geppert L 2005 IEEE Spect. 42 20

    [11]

    Knappe S, Schwindt P D D, Gerginov V, Shah V, Liew L, Moreland J, Robinson H G, Hollberg L, Kitching J 2006 J. Opt. A: Pure Appl. Opt. 8 S318

    [12]

    Douahi A, Nieradko L, Beugnot J C, Dziuban J, Maillote H, Guerandel S, Moraja M, Gorecki C, Giordano V 2007 Electron. Lett. 43 33

    [13]

    Ptremand Y, Affolderbach C, Straessle R, Pellaton M, Briand D, Mileti G, Rooij N F D 2012 J. Micromech. Microeng. 22 025013

    [14]

    Ermak S V, Semenov V V, Piatyshev E N, Kazakin A N, Komarevtsev I M, Velichko E N, Davydov V V, Petrenko M V 2015 St. Petersburg Polytech. Univ. J. Phys. Math. 1 37

    [15]

    Vanier J 2005 Appl. Phys. B: Laser. Opt. 81 421

    [16]

    DeNatale J F, Borwick R L, Tsai C, Stupar P A 2008 Proceedings of 2008 IEEE/ION Position, Location and Navigation Symposium Monterey, California, U.S.A., May 5-8, 2008 p67

    [17]

    Lutwak R 2009 Proceedings of 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum Besanon, France, Apiral 20-24, 2009 p573

    [18]

    Blokhin S A, Lott J A, N. N. Ledentsov, Bimberg D 2011 Proceedings of 2011 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 13-16, 2011 p1

    [19]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208

    [20]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Tech. Lett. 23 1049

    [21]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R 2013 Opt. Express 21 5781

    [22]

    Zhang J, Ning Y Q, Zeng Y G, Zhang J W, Zhang J L, Fu X H, Tong C Z, Wang L J 2013 Laser Phys. Lett. 10 045802

    [23]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 0502001 (in Chinese) [张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 0502001]

    [24]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763

    [25]

    Chuang S L 1991 Phys. Rev. B: Condens. Matter 43 9649

    [26]

    Chuang S L 1995 Physics of Optoelectronic Devices (1st Ed.) (New York: Wiley) pp124-192

    [27]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [28]

    Wang X D, Wu X M, Wang Q, Cao Y L, He G R, Tan M Q 2006 Acta Phys. Sin. 55 4983 (in Chinese) [王小东, 吴旭明, 王青, 曹玉莲, 何国荣, 谭满清 2006 物理学报 55 4983]

  • [1]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [2]

    Choquette K D, Hou H Q 1997 Proc. IEEE 85 1730

    [3]

    Koyama F 2008 Proc. SPIE 7135 71350J

    [4]

    Fryslie S T M, Choquette K D 2015 IEEE Photon. J. 7 1

    [5]

    Guan B L, Liu X, Jiang X W, Liu C, Xu C 2015 Acta Phys. Sin. 64 164203 (in Chinese) [关宝璐, 刘欣, 江孝伟, 刘储, 徐晨 2015 物理学报 64 164203]

    [6]

    Larsson A 2011 IEEE J. Select. Top. Quantum. Electron. 17 1552

    [7]

    Crowley M T, Kovanis V, Lester L F 2012 IEEE Photon. J. 4 565

    [8]

    Jensen J B, Rodes R, Caballero A, Ning C, Zibar D, Monroy I T 2014 IEEE/OSA J. Lightwave Tech. 32 1423

    [9]

    Nguyen C T 2007 IEEE Tran. Ultrason. Ferro. Freq. Control 54 251

    [10]

    Geppert L 2005 IEEE Spect. 42 20

    [11]

    Knappe S, Schwindt P D D, Gerginov V, Shah V, Liew L, Moreland J, Robinson H G, Hollberg L, Kitching J 2006 J. Opt. A: Pure Appl. Opt. 8 S318

    [12]

    Douahi A, Nieradko L, Beugnot J C, Dziuban J, Maillote H, Guerandel S, Moraja M, Gorecki C, Giordano V 2007 Electron. Lett. 43 33

    [13]

    Ptremand Y, Affolderbach C, Straessle R, Pellaton M, Briand D, Mileti G, Rooij N F D 2012 J. Micromech. Microeng. 22 025013

    [14]

    Ermak S V, Semenov V V, Piatyshev E N, Kazakin A N, Komarevtsev I M, Velichko E N, Davydov V V, Petrenko M V 2015 St. Petersburg Polytech. Univ. J. Phys. Math. 1 37

    [15]

    Vanier J 2005 Appl. Phys. B: Laser. Opt. 81 421

    [16]

    DeNatale J F, Borwick R L, Tsai C, Stupar P A 2008 Proceedings of 2008 IEEE/ION Position, Location and Navigation Symposium Monterey, California, U.S.A., May 5-8, 2008 p67

    [17]

    Lutwak R 2009 Proceedings of 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum Besanon, France, Apiral 20-24, 2009 p573

    [18]

    Blokhin S A, Lott J A, N. N. Ledentsov, Bimberg D 2011 Proceedings of 2011 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 13-16, 2011 p1

    [19]

    Serkland D K, Geib K M, Lutwak R, Garvey R M, Varghese M, Mescher M 2006 Proc. SPIE 6132 613208

    [20]

    Al-Samaneh A, Bou Sanayeh M, Renz S, Wahl D, Michalzik R 2011 IEEE Photon. Tech. Lett. 23 1049

    [21]

    Gruet F, Al-Samaneh A, Kroemer E, Bimboes L, Miletic D, Affolderbach C, Wahl D, Boudot R 2013 Opt. Express 21 5781

    [22]

    Zhang J, Ning Y Q, Zeng Y G, Zhang J W, Zhang J L, Fu X H, Tong C Z, Wang L J 2013 Laser Phys. Lett. 10 045802

    [23]

    Zhang J W, Ning Y Q, Zhang X, Zeng Y G, Zhang J, Liu Y, Qin L, Wang L J 2013 Chin. Laser J. 40 0502001 (in Chinese) [张建伟, 宁永强, 张星, 曾玉刚, 张建, 刘云, 秦莉, 王立军 2013 中国激光 40 0502001]

    [24]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763

    [25]

    Chuang S L 1991 Phys. Rev. B: Condens. Matter 43 9649

    [26]

    Chuang S L 1995 Physics of Optoelectronic Devices (1st Ed.) (New York: Wiley) pp124-192

    [27]

    Iga K, Koyama F, Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845

    [28]

    Wang X D, Wu X M, Wang Q, Cao Y L, He G R, Tan M Q 2006 Acta Phys. Sin. 55 4983 (in Chinese) [王小东, 吴旭明, 王青, 曹玉莲, 何国荣, 谭满清 2006 物理学报 55 4983]

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Han Yan-Chen, Li Yu-Dong, Li Wei. Relationship between coherent population trapping oscillation and Raman detuning. Acta Physica Sinica, 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [3] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [4] Pan Zhi-Peng, Li Wei, Lü Jia-Gang, Nie Yu-Wei, Zhong Li, Liu Su-Ping, Ma Xiao-Yu. Design and fabrication of 940 nm vertical cavity surface emitting laser single-emitter device. Acta Physica Sinica, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [5] Zhang Mao-Lin, Ma Wan-Yu, Wang Lei, Liu Zeng, Yang Li-Li, Li Shan, Tang Wei-Hua, Guo Yu-Feng. Investigation of high-temperature performance of WO3/β-Ga2O3 heterojunction deep-ultraviolet photodetectors. Acta Physica Sinica, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [7] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [8] Zhang Hao, Guo Xing-Xing, Xiang Shui-Ying. Key distribution based on unidirectional injection of vertical cavity surface emitting laser system. Acta Physica Sinica, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [9] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [10] Guan Bao-Lu, Liu Xin, Jiang Xiao-Wei, Liu Chu, Xu Chen. Multi-transverse-mode and wavelength split characteristics of vertical cavity surface emitting laser. Acta Physica Sinica, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [11] Yin Yi, Zhang Yi, Tan Bo-Zhong, Chen Jie-Hua, Gu Si-Hong. Study on characteristics of coherent population trapping spectral line for chip-scale atomic clock. Acta Physica Sinica, 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [12] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [13] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [14] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [15] Song Yun-Fei, Yu Guo-Yang, Yin He-Dong, Zhang Ming-Fu, Liu Yu-Qiang, Yang Yan-Qiang. Temperature dependence of elastic modulus of single crystal sapphire investigated by laser ultrasonic. Acta Physica Sinica, 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [16] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [17] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] Zhao Hong-Dong, Song Dian-You, Zhang Zhi-Feng, Sun Ji ng, Sun Mei, Wu Yi, Wen Xing-Rao. Influence of the potential in n-type DBR on threshold in vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
Metrics
  • Abstract views:  7158
  • PDF Downloads:  473
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2016
  • Accepted Date:  20 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回