Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films

Huang Chao Liu Ling-Yun Fang Jun Zhang Wen-Hua Wang Kai Gao Pin Xu Fa-Qiang

Citation:

High magnetic field influence on the molecular orientation and the morphology of iron phthalocyanine thin films

Huang Chao, Liu Ling-Yun, Fang Jun, Zhang Wen-Hua, Wang Kai, Gao Pin, Xu Fa-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Molecular orientation and stacking mode are commonly considered to have vital influence on the optoelectronic performances of organic semiconductor devices via changing the dynamics of charge carriers transferring among the molecules. Highly ordered and homogeneous stacking would allow a fast band transfer mechanism in the phase domain. Therefore the controls of the molecular orientation and the stacking behavior are of great significance for optimizing the device natures. In this work, the modification and control of iron phthalocyanine (FePc) molecular orientation on Si(111) are accomplished with the aid of high steady magnetic field at room temperature. The FePc films are grown in situ by organic molecular beam deposition on the Si(111) substrates under a high magnetic field strength of 8.5 T. The Si(111) substrates are preserved at room temperature and are kept perpendicular to the magnetic field. The influences of magnetic field on the molecular orientations and the morphologies of FePc thin films are investigated by X-ray diffraction, angle dependent near edge X-ray absorption fine structure (NEXAFS), Raman spectroscopy and atomic force microscopy (AFM). In the presence of the external magnetic field, the deposited FePc films each show a higher crystallinity and slightly closer packing in (002) plane than those without magnetic field. The AFM images verifies more ordered and uniform morphologies of the FePc films grown in the magnetic field. NEXAFS and Raman results both reveale a standing-up configuration of FePc molecules on the Si(111) substrate surface. The average tilting angle of the molecules changes from 63.6 to 67.1 when 8.5 T magnetic field is employed. The results demonstrate that the external high magnetic field distinctly enhances the orientation order of FePc molecules on Si(111) surface due to the magnetic-magnetic interactions between the magnetic field and the molecular magnetic moment. This work also demonstrates that external magnetic field is an efficient means to regulate the orientation and stacking behavior of magnetic molecules, which may open a new way to optimize the performances of the organic semiconductor devices.
      Corresponding author: Xu Fa-Qiang, fqxu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1232137, 11575187), and the Scientific Research Program of the Hefei Science Center, Chinese Academy of Sciences, China (Grant No. 2015SRG-HSC032).
    [1]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [2]

    Horowitz G 2004 J. Mater. Res. 19 1946

    [3]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216

    [4]

    Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003

    [5]

    Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969

    [6]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922

    [7]

    Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410

    [8]

    Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261

    [9]

    Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180

    [10]

    Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150

    [11]

    Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166

    [12]

    Dey S, Pal A J 2010 Langmuir 26 17139

    [13]

    Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301

    [14]

    Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89

    [15]

    Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263

    [16]

    Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125

    [17]

    Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339

    [18]

    Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643

    [19]

    Barraclough C G 1971 J. Chem. Phys. 55 1426

    [20]

    Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458

    [21]

    Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145

    [22]

    Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299

    [23]

    Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522

    [24]

    Stohr J, Outka D A 1987 Phys. Rev. B 36 7891

    [25]

    Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638

    [26]

    Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446

    [27]

    Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709

    [28]

    Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770

    [29]

    Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589

    [30]

    Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107

    [31]

    Basova T V, Kolesov B A 1998 Thin Solid Films 325 140

  • [1]

    Hoppe H, Sariciftci N S 2004 J. Mater. Res. 19 1924

    [2]

    Horowitz G 2004 J. Mater. Res. 19 1946

    [3]

    Pramanik S, Stefanita C G, Patibandla S, Bandyopadhyay S, Garre K, Harth N, Cahay M 2007 Nat. Nanotechnol. 2 216

    [4]

    Wang L, Liu L, Chen W, Feng Y P, Wee A T S 2006 J. Am. Chem. Soc. 128 8003

    [5]

    Yu S, Ahmadi S, Sun C H, Schulte K, Pietzsch A, Hennies F, Zuleta M, Gothelid M 2011 J. Phys. Chem. C 115 14969

    [6]

    Zhong J Q, Mao H Y, Wang R, Qi D C, Cao L, Wang Y Z, Chen W 2011 J. Phys. Chem. C 115 23922

    [7]

    Chen W, Qi D C, Huang H, Gao X Y, Wee A T S 2011 Adv. Funct. Mater. 21 410

    [8]

    Boamfa M I, Christianen P C M, Engelkamp H, Nolte R J M, Maan J C 2004 Adv. Funct. Mater. 14 261

    [9]

    Ji Z, Xiang Y, Ueda Y 2004 Prog. Org. Coat. 49 180

    [10]

    Sassella A, Baldi I, Borghesi A, Campione M, Miozzo L, Moret M, Papagni A, Salerno A, Tavazzi S, Trabattoni S 2005 J. Phys. Chem. B 109 5150

    [11]

    Kolotovska V, Friedrich M, Zahn D R T, Salvan G 2006 J. Cryst. Growth 291 166

    [12]

    Dey S, Pal A J 2010 Langmuir 26 17139

    [13]

    Tabata K, Sasaki T, Yamamoto Y 2013 Appl. Phys. Lett. 103 043301

    [14]

    Pfeiffer M, Leo K, Zhou X, Huang J S, Hofmann M, Werner A, Blochwitz-Nimoth J 2003 Org. Electron. 4 89

    [15]

    Wang N N, Yu J S, Zang Y, Huang J, Jiang Y D 2010 Sol. Energy Mater. Sol. Cells 94 263

    [16]

    Gu D H, Chen Q Y, Tang X D, Gan F X, Shen S Y, Liu K, Xu H J 1995 Opt. Commun. 121 125

    [17]

    Milev A S, Tran N, Kannangara G S K, Wilson M A, Avramov I 2008 J. Phys. Chem. C 112 5339

    [18]

    Barraclo.Cg, Martin R L, Mitra S, Sherwood R C 1970 J. Chem. Phys. 53 1643

    [19]

    Barraclough C G 1971 J. Chem. Phys. 55 1426

    [20]

    Gregson A K, Martin R L, Mitra S {1976 J. Chem. Soc. Dalton 15 1458

    [21]

    Tunhoo B, Nukeaw J 2009 Mater. Res. Innov. 13 145

    [22]

    Hu W P, Liu Y Q, Zhou S Q, Tao J, Xu D F, Zhu D B 1999 Thin Solid Films 347 299

    [23]

    Szybowicz M, Makowiecki J 2012 J. Mater. Sci. 47 1522

    [24]

    Stohr J, Outka D A 1987 Phys. Rev. B 36 7891

    [25]

    Betti M G, Gargiani P, Frisenda R, Biagi R, Cossaro A, Verdini A, Floreano L, Mariani C 2010 J. Phys. Chem. C 114 21638

    [26]

    Calabrese A, Floreano L, Verdini A, Mariani C, Betti M G 2009 Phys. Rev. B 79 115446

    [27]

    Ahlund J, Nilson K, Schiessling J, Kjeldgaard L, Berner S, Martensson N, Puglia C, Brena B, Nyberg M, Luo Y 2006 J. Chem. Phys. 125 034709

    [28]

    Basova T V, Kolesov B A 2000 J. Struct. Chem. 41 770

    [29]

    Szybowicz M, Bala W, Fabisiak K, Paprocki K, Drozdowski M 2011 J. Mater. Sci. 46 6589

    [30]

    Szybowicz M, Runka T, Drozdowski M, Bala W, Grodzicki A, Piszczek P, Bratkowski A 2004 J. Mol. Struct. 704 107

    [31]

    Basova T V, Kolesov B A 1998 Thin Solid Films 325 140

  • [1] Lan Wan, Chi Chen-Yang, Guo Ying-Chun, Yang Yu-Jun, Wang Bing-Bing. High order harmonic spectra of CO under external electrostatic field. Acta Physica Sinica, 2023, 72(13): 134202. doi: 10.7498/aps.72.20230560
    [2] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [3] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [4] Li Zhi-Hao, Cao Liang, Guo Yu-Xian. Electronic structure of a 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride thin film revealed by synchrotron-based resonant photoemission spectroscopy. Acta Physica Sinica, 2017, 66(22): 224101. doi: 10.7498/aps.66.224101
    [5] Pan Guo-Xing, Li Tian, Tang Guo-Qiang, Zhang Fa-Pei. Growth and carrier transport properties of highly oriented films of the semiconducting polymers via solution dip-casting. Acta Physica Sinica, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [6] Zhang Yu-He, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhu Meng-Long, Zhang Hong, Liu Peng, Cao Ning-Tong, Gao Yong-Li. Adsorption, film growth, and electronic structures of 2,7-dioctyl[1]benzothieno-[3,2-b][1]benzothiophene (C8-BTBT) on Cu (100). Acta Physica Sinica, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [7] Zhang Hong, Niu Dong-Mei, Lü Lu, Xie Hai-Peng, Zhang Yu-He, Liu Peng, Huang Han, Gao Yong-Li. Thickness-dependent electronic structure of the interface of 2,7-dioctyl[1]benzothieno[3,2-b][1] benzothiophene/Ni(100). Acta Physica Sinica, 2016, 65(4): 047902. doi: 10.7498/aps.65.047902
    [8] Cao Ning-Tong, Zhang Lei, Lü Lu, Xie Hai-Peng, Huang Han, Niu Dong-Mei, Gao Yong-Li. van der Waals heterostructure about CuPc/MoS2(0001). Acta Physica Sinica, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [9] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] Jian Lei, Tan Ying-Xiong, Li Quan, Zhao Ke-Qing. Charge transport properties of truxene derivatives molecules. Acta Physica Sinica, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [11] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] Cao Liang, Zhang Wen-Hua, Chen Tie-Xin, Han Yu-Yan, Xu Fa-Qiang, Zhu Jun-Fa, Yan Wen-Sheng, Xu Yang, Wang Feng. The molecular orientation and electronic structure of 3, 4, 9, 10-perylene tetracarboxylic dianhydride grown on Au(111). Acta Physica Sinica, 2010, 59(3): 1681-1688. doi: 10.7498/aps.59.1681
    [13] Wang Run-Sheng, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Li Rong-Hua, Xie Hong-Wei, Wang Ying, Zhao Ming, Yuan Jian-Ting. The theory of physical doping in organic semiconductor. Acta Physica Sinica, 2009, 58(11): 7897-7903. doi: 10.7498/aps.58.7897
    [14] Hu Yue, Rao Hai-Bo, Li Jun-Fei. Numerical model of ITO /organic semiconductor/metal organic light emitting device. Acta Physica Sinica, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [15] Yang Zeng-Qiang, Zhou Xiao-Xin. Controlling pulse duration of two-pulse laser to enhance alignment of N2 molecules. Acta Physica Sinica, 2008, 57(7): 4099-4103. doi: 10.7498/aps.57.4099
    [16] Liu Jun, Hou Yan-Bing, Sun Xin, Shi Quan-Min, Li Yan, Jin Hui, Lu Jing. The influence of electric field introduced polymer molecular orientation on the formation cross-section of singlet and triplet excitons in PLED. Acta Physica Sinica, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [17] Li Xun-Shuan, Peng Ying-Quan, Yang Qing-Sen, Xing Hong-Wei, Lu Fei-Ping. Analytical model of charge transport at organic semiconductor interfaces. Acta Physica Sinica, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [18] Ren Jun-Feng, Zhang Yu-Bin, Xie Shi-Jie. Current spin polarization in ferromagnetic/organic semiconductor/ferromagnetic system. Acta Physica Sinica, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [19] Wu Tai-Quan, Tang Jing-Chang, Zhu Ping, Li Hai-Yang. Near edge x-ray absorption fine structure studies of local structure of dihexyldisulfide multilayer. Acta Physica Sinica, 2005, 54(12): 5837-5844. doi: 10.7498/aps.54.5837
    [20] LU MING, XU SHAO-HUI, ZHANG SONG-TAO, HE JUN, XIONG ZU-HONG, DENG ZHEN-BO, DING XUN-MIN. OPTICAL PROPERTIES OF ORGANIC MICROCAVITY BASED ON POROUS SILICON BRAGG REFLECTOR. Acta Physica Sinica, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
Metrics
  • Abstract views:  4974
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2016
  • Accepted Date:  30 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回