Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108

Liu Xiu-Ying Li Xiao-Feng Yu Jing-Xin Li Xiao-Dong

Citation:

Density functional theory study of hydrogen spillover mechanism on Pd doped covalent organic frameworks COF-108

Liu Xiu-Ying, Li Xiao-Feng, Yu Jing-Xin, Li Xiao-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hydrogen storage remains one of the main challenges in the implementation of a hydrogen-based energy economy. Among various porous materials, hydrogen storage in covalent-organic frameworks (COFs) has attracted the most significant attention since they were first synthesized due to good stability, large surface area, porosity and extremely low density. Although COFs exhibit promising hydrogen storage properties at very low temperatures, their hydrogen storage capacity is not satisfactory at room temperature, which is too low to meet the uptake target set by US-DOE, thereby being unable to have practical applications. Remarkably, hydrogen spillover has been experimentally demonstrated as an effective approach to improving the hydrogen storage capacity on porous materials at ambient temperature. In some of the most promising results the metal-organic frameworks (MOFs) and COFs have been used as substrates. However, the structures of many COFs materials are quite complex and the experimental condition is difficult to control. Furthermore, the sample preparations for these hydrogen spillover experiments are also very difficult. Therefore, only COF-1 is used in experimental study of hydrogen spillover. Although some theoretical work has contributed to understanding the hydrogen spillover mechanism of COFs, many basic problems about hydrogen spillover have not been solved, which hinders its practical application to a large extent. Based on the above reasons, the hydrogen spillover mechanism of Pd doped COF-108 is studied by using density functional theory (DFT) method, which mainly includes the various deposited configurations of Pd4 cluster on COF-108, the adsorption and dissociation of H2 on Pd4 cluster of Pd4@COF-108, the migration of H atom from Pd4 cluster toward the COF-108 and the diffusion of H atom on COF-108 surface. The results show as follows. 1) The larger the number of Pd atoms interacting with HHTP or TBPM cluster, the greater the binding energy of Pd4 deposited on them is. Deposited configuration orientation has little effect on binding energy. The binding energies of all deposition configurations for TBPM cluster are larger than those for HHTP cluster, so Pd4 cluster prefers to deposit on TBPM cluster with face-contact configuration. (2) H2 molecules spontaneously dissociated into Pd4 cluster, i.e., a barrierless H2 dissociation process takes place, which meets the first condition required by hydrogen spillover. 3) Only H atom located at the bridge site may migrate to the substrate surface, and the migration process is an endothermic reaction and less stable, which indicates that H atoms will further diffuse on the substrate surface. Although H atoms located at the top site may not migrate directly to the substrate surface, it will automatically migrate to the bridge site after the H atom on the bridge site has migrated to the substrate surface, so the migration process may proceed continuously. (4) The introduction of transition metal Pd can greatly reduce the diffusion energy barrier of H atoms on substrate surface, which makes it easier for H atoms to diffuse on substrate. These results may help us understand the microscopic mechanism of hydrogen spillover influencing the properties of hydrogen storage on COFs and provide useful guidance for targeted preparing the COFs materials with excellent hydrogen storage properties experimentally.
      Corresponding author: Liu Xiu-Ying, liuxiuyingzx@126.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant Nos. 11304079,11304140, 11404094, 11504088), the China National Scholarship Fund (Grant No. 201508410255), the Foundation for University Key Teachers from Henan Province of China and the Fundamental Research Funds for the Central Universities of Henan Province of China.
    [1]

    Ct A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M 2005 Science 310 1166

    [2]

    Han S S, Furukawa H, Yaghi O M, Goddard II W A 2008 J. Am. Chem. Soc. 130 11580

    [3]

    Klontzas E, Tylianakis E, Froudakis G E 2008 J. Phys. Chem. C 112 9095

    [4]

    Furukawa H, Yaghi O M 2009 J. Am. Chem. Soc. 131 8875

    [5]

    Klontzas E, Tylianakis E, Froudakis G E 2010 Nano. Lett. 10 452

    [6]

    Tylianakis E, Klontzas E, Froudakis G E 2011 Nanoscale 3 856

    [7]

    Kim D, Jung D H, Kim K H, Guk H, Han S S, Choi K, Choi S H 2012 J. Phys. Chem. C 116 1479

    [8]

    Liu X Y, He J, Yu J X, Li Z X 2014 Chin. Phys. B 23 067303

    [9]

    Lachawiec A J Jr, Qi G, Yang R T 2005 Langmuir 21 11418

    [10]

    Lueking A, Yang R T 2002 J. Catal. 206 165

    [11]

    Li Y W, Yang R T 2006 J. Phys. Chem. B 110 17175

    [12]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802]

    [13]

    Li Y W, Yang R T 2006 J. Am. Chem. Soc. 128 726

    [14]

    Li Y W, Yang R T 2006 J. Am. Chem. Soc. 128 8136

    [15]

    Li Y W, Yang R T 2008 AIChE 54 269

    [16]

    Suri M, Dornfeld M, Ganz E 2009 J. Chem. Phys. 131 174703

    [17]

    Ganz E, Dornfeld M 2012 J. Phys. Chem. C 116 3661

    [18]

    Guo J H, Zhang H, Tang Y J, Cheng X L 2013 Phys. Chem. Chem. Phys. 15 2873

    [19]

    Zhou C G, Wu J P, Nie A H, Forrey R C, Tachibana A, Cheng H S 2007 J. Phys. Chem. C 111 12773

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [21]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [24]

    Kresse G, Joubert D {1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [27]

    Psofogiannakis G M, Froudakis G E 2009 J. Phys. Chem. C 113 14908

    [28]

    Wu H Y, Fan X F, Kuo J L, Deng W Q 2011 J. Phys. Chem. C 115 9241

  • [1]

    Ct A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M 2005 Science 310 1166

    [2]

    Han S S, Furukawa H, Yaghi O M, Goddard II W A 2008 J. Am. Chem. Soc. 130 11580

    [3]

    Klontzas E, Tylianakis E, Froudakis G E 2008 J. Phys. Chem. C 112 9095

    [4]

    Furukawa H, Yaghi O M 2009 J. Am. Chem. Soc. 131 8875

    [5]

    Klontzas E, Tylianakis E, Froudakis G E 2010 Nano. Lett. 10 452

    [6]

    Tylianakis E, Klontzas E, Froudakis G E 2011 Nanoscale 3 856

    [7]

    Kim D, Jung D H, Kim K H, Guk H, Han S S, Choi K, Choi S H 2012 J. Phys. Chem. C 116 1479

    [8]

    Liu X Y, He J, Yu J X, Li Z X 2014 Chin. Phys. B 23 067303

    [9]

    Lachawiec A J Jr, Qi G, Yang R T 2005 Langmuir 21 11418

    [10]

    Lueking A, Yang R T 2002 J. Catal. 206 165

    [11]

    Li Y W, Yang R T 2006 J. Phys. Chem. B 110 17175

    [12]

    Liu X Y, Li X F, Zhang L Y, Fan Z Q, Ma X K 2012 Acta Phys. Sin. 61 146802 (in Chinese) [刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科 2012 物理学报 61 146802]

    [13]

    Li Y W, Yang R T 2006 J. Am. Chem. Soc. 128 726

    [14]

    Li Y W, Yang R T 2006 J. Am. Chem. Soc. 128 8136

    [15]

    Li Y W, Yang R T 2008 AIChE 54 269

    [16]

    Suri M, Dornfeld M, Ganz E 2009 J. Chem. Phys. 131 174703

    [17]

    Ganz E, Dornfeld M 2012 J. Phys. Chem. C 116 3661

    [18]

    Guo J H, Zhang H, Tang Y J, Cheng X L 2013 Phys. Chem. Chem. Phys. 15 2873

    [19]

    Zhou C G, Wu J P, Nie A H, Forrey R C, Tachibana A, Cheng H S 2007 J. Phys. Chem. C 111 12773

    [20]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [21]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [24]

    Kresse G, Joubert D {1999 Phys. Rev. B 59 1758

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [27]

    Psofogiannakis G M, Froudakis G E 2009 J. Phys. Chem. C 113 14908

    [28]

    Wu H Y, Fan X F, Kuo J L, Deng W Q 2011 J. Phys. Chem. C 115 9241

  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Zhou Xiao-Feng, Fang Hao-Yu, Tang Chun-Mei. Hydrogen storage capacity of expanded sandwich structure graphene-2Li-graphene. Acta Physica Sinica, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [3] Li Shou-Ying, Zhao Wei-Min, Qiao Jian-Hua, Wang Yong. Competitive adsorption of CO and H2 on strained Fe(110) surface. Acta Physica Sinica, 2019, 68(21): 217103. doi: 10.7498/aps.68.20190660
    [4] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [5] Xu Zi-Wei, Shi Chang-Shuai, Zhao Guang-Hui, Wang Ming-Yuan, Liu Gui-Wu, Qiao Guan-Jun. Hydrogen adsorption mechanism on single-layer MoSe2 for hydrogen evolution reaction: First-principles study. Acta Physica Sinica, 2018, 67(21): 217102. doi: 10.7498/aps.67.20180882
    [6] Qi Peng-Tang, Chen Hong-Shan. Hydrogen storage properties of Li-decorated C24 clusters. Acta Physica Sinica, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [7] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [9] Huang Hai-Shen, Wang Xiao-Man, Zhao Dong-Qiu, Wu Liang-Fu, Huang Xiao-Wei, Li Yun-Cai. Hydrogen storage capacity of Y-coated Si@Al12 clusters. Acta Physica Sinica, 2012, 61(7): 073101. doi: 10.7498/aps.61.073101
    [10] Yuan Jian-Mei, Hao Wen-Ping, Li Shun-Hui, Mao Yu-Liang. Density functional study on the adsorption of C atoms on Ni (111) surface. Acta Physica Sinica, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] Sun Jian-Min, Zhao Gao-Feng, Wang Xian-Wei, Yang Wen, Liu Yan, Wang Yuan-Xu. Study of structural and electronic properties of Cu-adsorbed (SiO2)n(n=1—8) clusters with the DFT. Acta Physica Sinica, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [12] Lu Qi-Liang, Luo Qi-Quan, Chen Li-Li. Density functional theory study of hydrogen adsorption on C@Al12 cluster. Acta Physica Sinica, 2010, 59(1): 234-238. doi: 10.7498/aps.59.234
    [13] Liu Feng-Bin, Wang Jia-Dao, Chen Da-Rong, Zhao Ming, He Guang-Ping. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Physica Sinica, 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [14] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Zheng Xin, Fang Yu-Chao, Gao Tao. First-pricinples design on atomic scale for new lightweight hydrogen storage materials. Acta Physica Sinica, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [15] Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Pang Li-Juan, Zheng Xin, Gao Tao. The first-principles study on the elasticity of V-based solid solution hydrogen storage materials. Acta Physica Sinica, 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
    [16] Zhang Hui, Qi Ke-Zhen, Zhang Guo-Ying, Wu Di, Zhu Sheng-Long. First-principles study on the influence of component element substitution on the dehydrogenation ability of LiNH2 hydrogen storage materials. Acta Physica Sinica, 2009, 58(11): 8077-8082. doi: 10.7498/aps.58.8077
    [17] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [18] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [19] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  5724
  • PDF Downloads:  476
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2016
  • Accepted Date:  27 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回