Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental and computational study of damage pocess induced by 1064 nm nanosecond laser pulse on the exit surface of fused silica

Shen Chao Cheng Xiang-Ai Tian Ye Xu Zhong-Jie Jiang Tian

Citation:

Experimental and computational study of damage pocess induced by 1064 nm nanosecond laser pulse on the exit surface of fused silica

Shen Chao, Cheng Xiang-Ai, Tian Ye, Xu Zhong-Jie, Jiang Tian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Material response and the launch of laser plasma during the 1064 nm nanosecond laser pulse induced damage to the exit surface of fused silica are investigated. Employing a polarization-based two-frame shadowgraphy setup with ~ 60 fs probing resolution, the transient material responses from the rising part of nanosecond pumping pulse to several hundred nanosecond timescale are captured. Using a shearing interferometry setup, the evolution of transient phase shift of laser plasma in the expansion process to the ambient air is also investigated. Inhomogeneous distribution of phase shift caused by the electrons and neutrals in the plasma is quantitatively resolved by employing the fast Fourier transform based filtering algorism. To demonstrate the evolutions of important plasma parameters such as pressure, temperature and density, a continuum hydrodynamic model is numerically solved. The initial pressure of plasma is estimated according to the point-explosion model, and the initial plasma temperature is achieved by calculating the difference between simulating shockwave front radius and experimental value at the same delay. The optimal temperature is chosen when the radius difference is minimal. Main conclusions are as follows. 1) Abundant suprathermal electrons are excited in the early energy deposition process. Part of these electrons contribute to the thermal transport process and produce the laser supported solid-state absorption front (LSSAF) which propagates into the bulk silica. Other electrons escape to the air side and contribute to the formation of air plasma through the impact ionization process. Plasma expansion speed is about 20 km/s during this phase. 2) When the pump pulse is terminated, the LSSAF and air plasma lose their energy supplied and experience a rapid decline of the temperature and expansion velocity. As a result, the final damage crater depth exhibits seldomly no increase compared with the transient crater depth during this phase. Hot bulk plasma formed in this phase becomes the damage precursor and induces the ejection of abundant neutrals probably due to the phase explosion mechanism. Inhomogeneous distribution of stress is formed by Rayleigh-Taylor instability at the interface between hot bulk plasma and surrounding bulk material during the expansion of LSSAF. Radial and circumferential cracks are formed due to the release of stress. 3) Evolution of air plasma follows the conventional evolution process of laser-induced plasma, i. e. , internal pressure, temperature and density decrease quickly with time delay. The simulated transient highest pressure is about 600 MPa. Simulation also predicts the formation of the internal shockwave. Our work will be helpful in understanding the laser damage mechanism of the fused silica optical window.
      Corresponding author: Jiang Tian, jiangtian198611@163.com
    • Funds: Project supported by Scientific Researches of Foundation of College of Optoelectronic Science and Engineering, National University of Defense Technology (Grant No. 0100070014007).
    [1]

    Genin F Y, Feit M D, Kozlowski M R, Rubenchik A M, Salleo A, Yoshiyama J 1972 Appl. Phys. Lett. 21 364

    [2]

    Boling N L, Dub G, Crisp M D 1972 Appl. Phys. Lett. 21 364

    [3]

    Shen C, Chambonneau M. , Cheng X A, Xu Z J, Jiang T 2015 Appl. Phys. Lett. 107 1111101

    [4]

    Raman R A, Negres R A, Demos S G 2011 Appl. Phys. Lett. 98 051901

    [5]

    Raman R N, Elhadj S, Negres R A, Matthews M J, Feit M D, Demos S G 202 Opt. Express 20 27708

    [6]

    Demos S G, Negres R A, Raman R N, Rubenchik A M, Feit M D 2013 Laser Photon. Rev. 7 444

    [7]

    Liu H J, Zhou X D, Huang J, Wang F R, Jiang X , Huang J, Wu W D, Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese) [刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东,黄竞, 吴卫东, 郑万国 2011 物理学报 60 065202]

    [8]

    Diaz R, Chambonneau M, Courchinoux R, Grua P, Luce J, Rullier J L, Natoli J Y, Lamaignre L 2014 Opt. Lett. 39 674

    [9]

    Chambonneau M, Diaz R, Grua P, Rullier J L, Duchateau G, Natoli J Y, Lamaignere L 2014 Appl. Phys. Lett. 104 021121

    [10]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2013 Opt. Eng. 52 116106

    [11]

    Liu H J, Wang F R, Luo Q, Zhang Z, Huang J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2012 Acta Phys. Sin. 61 076103 (in Chinese) [刘红婕, 王凤蕊, 罗青, 张振, 黄进, 周信达, 蒋晓东, 吴卫东, 郑万国 2012 物理学报 61 076103]

    [12]

    Smith A V, Do B T 2008 Appl. Opt. 47 4812

    [13]

    Shen C, Cheng X A, Jiang T, Zhu Z W, Dai Y F 2015 J. Phys. D: Appl. Phys. 48 155501

    [14]

    Hayasaki Y, Isaka M, Takita A, Juodkazis S 2011 Opt. Express 19 5725

    [15]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia Sh L, Qiu A C 2014 Acta Phys. Sin. 64 125206 (in Chinese) [吴坚, 李兴文, 李阳,杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 物理学报 63 125206]

    [16]

    Sun W, Qi H J, Fang Z, Yu Z K, Yi K, Shao J D 2014 Appl. Surf. Sci. 30979

    [17]

    Temple P, Soileau M J 1981 IEEE J. Quantum Elect. 17 2067

    [18]

    Miloshevsky A, Harilal S S, Miloshevsky G, Hassanein A 2014 Phys. Plasmas 21 083504

    [19]

    Raman R N, Negres R A, Demos S G 2011 Opt. Eng. 50 013602

    [20]

    Mao S S, Mao X L, Greif R, Russo R E 2000 Appl. Phys. Lett. 77 2464

    [21]

    Carr C W, Bude J D, Demange P 2010 Phys. Rev. B 82 184304

    [22]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [23]

    Grua P, Hbert D, Lamaignre L, Rullier L 2014 Phys. Plasmas 21 083112

    [24]

    Demange P, Negres R A, Raman R N, Colvin J D, Demos S G 2011 Phys. Rev. B 84 054118

    [25]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

    [26]

    Wei W F, Li X W, Wu J, Yang Z F, Jia S L, Qiu A C 2014 Phys. Plasmas 21 083112

    [27]

    Yang Z F, Wei W F, Han J X, Wu J, Li X W, Jia S L 2015 Phys. Plasmas 22 073511

    [28]

    Oh S Y, Singh J P, Lim C 2014 Appl. Opt. 53 3593

    [29]

    Hong Y J, Oh S Y, Ha S Y, Kim H J, Lim C W 2014 IEEE Trans. Plasma Sci. 42 820

    [30]

    Tatarakis M, Davies J R, Lee P, Norreys P A, Kassapakis N G, Beg F N, Bell A R, Haines M G, Dangor A E 1998 Phys. Rev. Lett. 81 999

    [31]

    Singh R P, Gupta S L, Thareja R K 2013 Phys. Plasmas 20 123509

    [32]

    Liu T H, Gao X, Hao Z Q, Liu Z H, Lin J Q 2013 J. Phys. D: Appl. Phys. 46 485207

    [33]

    Crisp M D,Boling N L, Dub G 1972 Appl. Phys. Lett. 21 364

    [34]

    Porneala C,David A W 2006 Appl. Phys. Lett. 89 211121

    [35]

    Resśguier T D, Cottet F 1995 J. Appl. Phys. 77 3756

    [36]

    Harilal S S, Miloshevsky G V, Diwakar P K, Lahaye N L, Hassanein A 2012 Phys. Plasmas 19 083504

    [37]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 101 023114

    [38]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 101 123105

  • [1]

    Genin F Y, Feit M D, Kozlowski M R, Rubenchik A M, Salleo A, Yoshiyama J 1972 Appl. Phys. Lett. 21 364

    [2]

    Boling N L, Dub G, Crisp M D 1972 Appl. Phys. Lett. 21 364

    [3]

    Shen C, Chambonneau M. , Cheng X A, Xu Z J, Jiang T 2015 Appl. Phys. Lett. 107 1111101

    [4]

    Raman R A, Negres R A, Demos S G 2011 Appl. Phys. Lett. 98 051901

    [5]

    Raman R N, Elhadj S, Negres R A, Matthews M J, Feit M D, Demos S G 202 Opt. Express 20 27708

    [6]

    Demos S G, Negres R A, Raman R N, Rubenchik A M, Feit M D 2013 Laser Photon. Rev. 7 444

    [7]

    Liu H J, Zhou X D, Huang J, Wang F R, Jiang X , Huang J, Wu W D, Zheng W G 2011 Acta Phys. Sin. 60 065202 (in Chinese) [刘红婕, 周信达, 黄进, 王凤蕊, 蒋晓东,黄竞, 吴卫东, 郑万国 2011 物理学报 60 065202]

    [8]

    Diaz R, Chambonneau M, Courchinoux R, Grua P, Luce J, Rullier J L, Natoli J Y, Lamaignre L 2014 Opt. Lett. 39 674

    [9]

    Chambonneau M, Diaz R, Grua P, Rullier J L, Duchateau G, Natoli J Y, Lamaignere L 2014 Appl. Phys. Lett. 104 021121

    [10]

    Ma B, Ma H P, Jiao H F, Cheng X B, Wang Z S 2013 Opt. Eng. 52 116106

    [11]

    Liu H J, Wang F R, Luo Q, Zhang Z, Huang J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2012 Acta Phys. Sin. 61 076103 (in Chinese) [刘红婕, 王凤蕊, 罗青, 张振, 黄进, 周信达, 蒋晓东, 吴卫东, 郑万国 2012 物理学报 61 076103]

    [12]

    Smith A V, Do B T 2008 Appl. Opt. 47 4812

    [13]

    Shen C, Cheng X A, Jiang T, Zhu Z W, Dai Y F 2015 J. Phys. D: Appl. Phys. 48 155501

    [14]

    Hayasaki Y, Isaka M, Takita A, Juodkazis S 2011 Opt. Express 19 5725

    [15]

    Wu J, Li X W, Li Y, Yang Z F, Shi Z Q, Jia Sh L, Qiu A C 2014 Acta Phys. Sin. 64 125206 (in Chinese) [吴坚, 李兴文, 李阳,杨泽锋, 史宗谦, 贾申利, 邱爱慈 2014 物理学报 63 125206]

    [16]

    Sun W, Qi H J, Fang Z, Yu Z K, Yi K, Shao J D 2014 Appl. Surf. Sci. 30979

    [17]

    Temple P, Soileau M J 1981 IEEE J. Quantum Elect. 17 2067

    [18]

    Miloshevsky A, Harilal S S, Miloshevsky G, Hassanein A 2014 Phys. Plasmas 21 083504

    [19]

    Raman R N, Negres R A, Demos S G 2011 Opt. Eng. 50 013602

    [20]

    Mao S S, Mao X L, Greif R, Russo R E 2000 Appl. Phys. Lett. 77 2464

    [21]

    Carr C W, Bude J D, Demange P 2010 Phys. Rev. B 82 184304

    [22]

    Carr C W, Radousky H B, Rubenchik A M, Feit M D, Demos S G 2004 Phys. Rev. Lett. 92 087401

    [23]

    Grua P, Hbert D, Lamaignre L, Rullier L 2014 Phys. Plasmas 21 083112

    [24]

    Demange P, Negres R A, Raman R N, Colvin J D, Demos S G 2011 Phys. Rev. B 84 054118

    [25]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

    [26]

    Wei W F, Li X W, Wu J, Yang Z F, Jia S L, Qiu A C 2014 Phys. Plasmas 21 083112

    [27]

    Yang Z F, Wei W F, Han J X, Wu J, Li X W, Jia S L 2015 Phys. Plasmas 22 073511

    [28]

    Oh S Y, Singh J P, Lim C 2014 Appl. Opt. 53 3593

    [29]

    Hong Y J, Oh S Y, Ha S Y, Kim H J, Lim C W 2014 IEEE Trans. Plasma Sci. 42 820

    [30]

    Tatarakis M, Davies J R, Lee P, Norreys P A, Kassapakis N G, Beg F N, Bell A R, Haines M G, Dangor A E 1998 Phys. Rev. Lett. 81 999

    [31]

    Singh R P, Gupta S L, Thareja R K 2013 Phys. Plasmas 20 123509

    [32]

    Liu T H, Gao X, Hao Z Q, Liu Z H, Lin J Q 2013 J. Phys. D: Appl. Phys. 46 485207

    [33]

    Crisp M D,Boling N L, Dub G 1972 Appl. Phys. Lett. 21 364

    [34]

    Porneala C,David A W 2006 Appl. Phys. Lett. 89 211121

    [35]

    Resśguier T D, Cottet F 1995 J. Appl. Phys. 77 3756

    [36]

    Harilal S S, Miloshevsky G V, Diwakar P K, Lahaye N L, Hassanein A 2012 Phys. Plasmas 19 083504

    [37]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 101 023114

    [38]

    Wen S B, Mao X L, Greif R, Russo R E 2007 J. Appl. Phys. 101 123105

  • [1] Zhang Xue-Yang, Chen Jun, Hu Wang-Yu. Atomic simulation of surface damage of fused silica under laser irradiation. Acta Physica Sinica, 2023, 72(15): 156201. doi: 10.7498/aps.72.20230606
    [2] Yin Jia-Peng, Liu Sheng-Guang. A single long electron bunch detect electromagnetic field evolution in laser plasma. Acta Physica Sinica, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] Zhang Li-Juan, Zhang Chuan-Chao, Chen Jing, Bai Yang, Jiang Yi-Lan, Jiang Xiao-Long, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Liao Wei. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface. Acta Physica Sinica, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [4] Bai Yang, Zhang Li-Juan, Liao Wei, Zhou Hai, Zhang Chuan-Chao, Chen Jing, Ye Ya-Yun, Jiang Yi-Lan, Wang Hai-Jun, Luan Xiao-Yu, Yuan Xiao-Dong, Zheng Wan-Guo. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements. Acta Physica Sinica, 2016, 65(2): 024205. doi: 10.7498/aps.65.024205
    [5] Jiang Yong, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Liu Chun-Ming, Xiang Xia, Qiu Rong, Zhou Qiang, Gao Xiang, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao, Miao Xin-Xiang. Effect of thermal annealing on damage growth of mitigated site on fused silica. Acta Physica Sinica, 2016, 65(4): 044209. doi: 10.7498/aps.65.044209
    [6] Han Wei, Feng Bin, Zheng Kui-Xing, Zhu Qi-Hua, Zheng Wan-Guo, Gong Ma-Li. Laser-induced damage growth of fused silica at 351 nm on a large-aperture high-power laser facility. Acta Physica Sinica, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [7] Zhong Mian, Yang Liang, Ren Wei, Xiang Xia, Liu Xiang, Lian You-Yun, Xu Shi-Zhen, Guo De-Cheng, Zheng Wan-Guo, Yuan Xiao-Dong. Optical properties and laser damage performance of SiO2 irradiated by high-power pulsed electron beam. Acta Physica Sinica, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [8] Jiang Yong, He Shao-Bo, Yuan Xiao-Dong, Wang Hai-Jun, Liao Wei, Lü Hai-Bing, Liu Chun-Ming, Xiang Xia, Qiu Rong, Yang Yong-Jia, Zheng Wan-Guo, Zu Xiao-Tao. Experimental investigation and numerical simulation of defect elimination by CO2 laser raster scanning on fused silica. Acta Physica Sinica, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] Liu Chun-Ming, Yang Liang, Yan Zhong-Hua, Jiang Yong, Wang Hai-Jun, Liao Wei, Xiang Xia, He Shao-Bo, Lü Hai-Bin, Yuan Xiao-Dong, Zheng Wan-Guo, Zu Xiao-Tao. The influence of CO2 laser local irradiation on the laser damage resistance of fused silica. Acta Physica Sinica, 2013, 62(9): 094701. doi: 10.7498/aps.62.094701
    [10] Zhang Chun-Lai, Liu Chun-Ming, Xiang Xia, Dai Wei, Wang Zhi-Guo, Li Li, Yuan Xiao-Dong, He Shao-Bo, Zu Xiao-Tao. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 124214. doi: 10.7498/aps.61.124214
    [11] Liu Hong-Jie, Wang Feng-Rui, Luo Qing, Zhang Zhen, Huang Jin, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Experimental comparison of damage performance induced by nanosecond 1 laser between K9 and fused silica optics. Acta Physica Sinica, 2012, 61(7): 076103. doi: 10.7498/aps.61.076103
    [12] Wang Kun-Peng, Yan Shi. S substituting for P point defect-induced laser damage in KDP crystals. Acta Physica Sinica, 2011, 60(9): 097401. doi: 10.7498/aps.60.097401
    [13] Liu Hong-Jie, Zhou Xin-Da, Huang Jin, Wang Feng-Rui, Jiang Xiao-Dong, Huang Jing, Wu Wei-Dong, Zheng Wan-Guo. Comparison of damage between front and rear surfaces under nanosecond 355nm laser irradiation on fused silica. Acta Physica Sinica, 2011, 60(6): 065202. doi: 10.7498/aps.60.065202
    [14] Zhao Xing-Hai, Hu Jian-Ping, Gao Yang, Pan Feng, Ma Ping. Laser induced damage and fracture of optical fiber in vacuum chamber. Acta Physica Sinica, 2010, 59(6): 3917-3923. doi: 10.7498/aps.59.3917
    [15] Xia Zhi-Lin, Guo Pei-Tao, Xue Yi-Yu, Huang Cai-Hua, Li Zhan-Wang. Investigation of the plasma bursting process in short pulsed laser induced film damage. Acta Physica Sinica, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [16] Wang Feng-Rui, Huang Jin, Liu Hong-Jie, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong, Zheng Wan-Guo. Laser induced rear-surface-crack damage properties of fused silica etched with HF solution. Acta Physica Sinica, 2010, 59(7): 5122-5127. doi: 10.7498/aps.59.5122
    [17] Liu Hong-Jie, Huang Jin, Wang Feng-Rui, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong. Effect of thermal stresses on fused silica surface on the laser induced damage. Acta Physica Sinica, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [18] Yu Quan-Zhi, Li Yu-Tong, Jiang Xiao-Hua, Liu Yong-Gang, Wang Zhe-Bin, Dong Quan-Li, Liu Feng, Zhang Zhe, Huang Li-Zhen, C. Danson, D. Pepler, Ding Yong-Kun, Fu Shi-Nian, Zhang Jie. Infulence of electron temperature on the two peaks of Thomson scattering ion-acoustic waves in laser plasmas. Acta Physica Sinica, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Cang Yu, Zhang Jie. Density modulation produced by ultrashort laser pulses and the phase reflection induced in underdense plasmas. Acta Physica Sinica, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [20] Fu Xi-Quan, Guo Hong. Propagation of x-ray in the laser plasma and its effect in the diagnosis of elec tric density. Acta Physica Sinica, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
Metrics
  • Abstract views:  5679
  • PDF Downloads:  391
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2016
  • Accepted Date:  18 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回