Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel

Zuo Xiao-Jing Meng Xiang-Ning Huang Shuo Wang Xin Zhu Miao-Yong

Citation:

Morphology simulation and mechanical analysis of primary dendrites for continuously cast low carbon steel

Zuo Xiao-Jing, Meng Xiang-Ning, Huang Shuo, Wang Xin, Zhu Miao-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The initial growing dendrite is influenced significantly by the complicated solidification conditions in continuously oscillating mold. The uneven growth of dendrite causes some defects seen commonly such as internal crack, subsurface porosity, subsurface inclusion and other defects of continuous casting billet. The induced initial defects in mold can be expanded and propagated in the following process such as secondary cooling, straightening, rolling and other subsequent handling procedure and then evolve into serious defects that can restrict the development and the quality refinement of final steel products. The mechanical stress caused by mold oscillation and the melt flowing is a crucial factor that leads to the uneven microstructure growth of initial solidifying shell in continuous casting mold. In this work, we simulate the growth and the morphology evolution of primary dendrites in mold area by using the cellular automaton (CA) method in combination with the actual conditions for continuously cast low carbon billet (Fe-0.6 wt.%C). Further, the mechanical state of initial dendrite is analyzed by regarding primary dendrite as a cantilever beam and its mechanical stress is calculated by combining thermo-physical properties and flow rate of steel based on the principle of materials mechanics to shed light on the formation of initial defects formation in mold area of continuous casting process. The results show that the solute concentration of initial dendrite tip gradually increases with undercooling from 2 to 10 K, and the maximum concentration rises by 0.07% when the increment of undercooling is 2 K. The length of dendrite arm increases significantly with undercooling from 2 to 6 K. However, the length of dendrite arm remains steady in a stable growth rate of 0.08 mms-1 when the undercooling is enhanced from 6 to 10 K. The increase of undercooling reduces the bending stress at dendrite root when the flow rate of molten steel is improved from 0.13 to 0.33 ms-1, while the mechanical stress continuously increases with the growth of primary dendrite at a constant undercooling. The bending stress of dendrite root has a high possibility to exceed its critical fracture strength under the condition of undercooling below 6 K or dendrite grow up more than 1 s. The primary dendrite is likely to be fractured and form initial defects of billet.
      Corresponding author: Meng Xiang-Ning, mengxn@smm.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51004031) and the Fundamental Research Fund for the Central Universities, China (Grant No. N140205002).
    [1]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 449 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 449]

    [2]

    Dou K, Qing J S, Wang L, Zhang X F, Wang B, Liu Q, Dong H B 2014 Acta Metall. Sin. 50 1505 (in Chinese) [窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标 2014 金属学报 50 1505]

    [3]

    Li R, Shen H D, Feng C M, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 物理学报 62 188106]

    [4]

    Chopra M A, Glicksman M E, Singh N B 1988 Metall. Mater. Trans. A 19 3087

    [5]

    Koss M B, Lacombe J C, Tennenhouse L A 1999 Metall. Mater. Trans. A 30 3177

    [6]

    Nastac L, Stefanescu D M 1996 Trans. Am. Found. Soc. 104 425

    [7]

    Han R H, Dong W C, Lu S P, Li D Z, Li Y Y 2014 Acta Phys. Sin. 63 228103 (in Chinese) [韩日宏, 董文超, 陆善平, 李殿中, 李依依 2014 物理学报 63 228103]

    [8]

    Hesselbarth H W, Göbel I R 1991 Acta Metall. Mater. 39 2135

    [9]

    Gandin C A, Desbiolies J L, Rappaz M 1999 Metall. Mater. Trans. A 30 3153

    [10]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233

    [11]

    Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345

    [12]

    Kermanpur A, Evans D G, Siddall R J 2004 J. Mater. Sci. 39 7175

    [13]

    Yamazaki M, Natsume Y, Harada H 2006 ISIJ Int. 46 903

    [14]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436

    [15]

    Nastac L 2012 Mater. Sci. Technol. 28 1006

    [16]

    Kundu S, Dutta M, Ganguly S, Chandra S 2004 Scr. Mater. 50 891

    [17]

    Lan Y J, Li D Z, Li Y Y 2004 Acta Mater. 52 1721

    [18]

    Qian M, Guo Z X 2004 Mater. Sci. Eng. A 365 180

    [19]

    Zheng Y X, Niu L S 2009 Comput. Mater. Sci. 46 443

    [20]

    Dahle A K, Arnberg L 1997 Acta Mater. 45 547

    [21]

    Dahle A K, Thevik H J, Arnberg L 1999 Metall. Mater. Trans. B 30 287

    [22]

    Pilling J, Hellawell A 1996 Metall. Mater. Trans. A 27 229

    [23]

    Meng X N, Lin R G, Yang J, Zuo X J, Zhu M Y 2015 J. Iron. Steel Res. Int. 22 1085

    [24]

    Zuo X J, Lin R G, Wang N, Yang J, Meng X N, Zhu M Y 2016 Steel Res. Int. 87 413

    [25]

    Lazaro B S, Doru M S 2003 Metall. Mater. Trans. A 34 367

    [26]

    Nastac L 1999 Acta Mater. 47 4253

    [27]

    Gaskell D R 1992 An Introduction to Transport Phenomena in Materials Engineering (New York: MacMillan Publishing Company) p125

    [28]

    Lipton J, Glicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

    [29]

    Alizadeh M, Jahromi A J, Abouali O 2008 ISIJ Int. 48 161

    [30]

    Flemings M C 1991 Metall. Mater. Trans. B 22 269

    [31]

    Meng Y, Thomas B G 2003 Metall. Mater. Trans. B 34 685

    [32]

    Kubota J 1990 Sixth International Iron and Steel Congress Proceeding Nagoya, Japan, October 21-26, 1990 p356

  • [1]

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin. 63 449 (in Chinese) [陈瑞, 许庆彦, 柳百成 2014 物理学报 63 449]

    [2]

    Dou K, Qing J S, Wang L, Zhang X F, Wang B, Liu Q, Dong H B 2014 Acta Metall. Sin. 50 1505 (in Chinese) [窦坤, 卿家胜, 王雷, 张晓峰, 王宝, 刘青, 董洪标 2014 金属学报 50 1505]

    [3]

    Li R, Shen H D, Feng C M, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 物理学报 62 188106]

    [4]

    Chopra M A, Glicksman M E, Singh N B 1988 Metall. Mater. Trans. A 19 3087

    [5]

    Koss M B, Lacombe J C, Tennenhouse L A 1999 Metall. Mater. Trans. A 30 3177

    [6]

    Nastac L, Stefanescu D M 1996 Trans. Am. Found. Soc. 104 425

    [7]

    Han R H, Dong W C, Lu S P, Li D Z, Li Y Y 2014 Acta Phys. Sin. 63 228103 (in Chinese) [韩日宏, 董文超, 陆善平, 李殿中, 李依依 2014 物理学报 63 228103]

    [8]

    Hesselbarth H W, Göbel I R 1991 Acta Metall. Mater. 39 2135

    [9]

    Gandin C A, Desbiolies J L, Rappaz M 1999 Metall. Mater. Trans. A 30 3153

    [10]

    Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233

    [11]

    Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345

    [12]

    Kermanpur A, Evans D G, Siddall R J 2004 J. Mater. Sci. 39 7175

    [13]

    Yamazaki M, Natsume Y, Harada H 2006 ISIJ Int. 46 903

    [14]

    Zhu M F, Hong C P 2001 ISIJ Int. 41 436

    [15]

    Nastac L 2012 Mater. Sci. Technol. 28 1006

    [16]

    Kundu S, Dutta M, Ganguly S, Chandra S 2004 Scr. Mater. 50 891

    [17]

    Lan Y J, Li D Z, Li Y Y 2004 Acta Mater. 52 1721

    [18]

    Qian M, Guo Z X 2004 Mater. Sci. Eng. A 365 180

    [19]

    Zheng Y X, Niu L S 2009 Comput. Mater. Sci. 46 443

    [20]

    Dahle A K, Arnberg L 1997 Acta Mater. 45 547

    [21]

    Dahle A K, Thevik H J, Arnberg L 1999 Metall. Mater. Trans. B 30 287

    [22]

    Pilling J, Hellawell A 1996 Metall. Mater. Trans. A 27 229

    [23]

    Meng X N, Lin R G, Yang J, Zuo X J, Zhu M Y 2015 J. Iron. Steel Res. Int. 22 1085

    [24]

    Zuo X J, Lin R G, Wang N, Yang J, Meng X N, Zhu M Y 2016 Steel Res. Int. 87 413

    [25]

    Lazaro B S, Doru M S 2003 Metall. Mater. Trans. A 34 367

    [26]

    Nastac L 1999 Acta Mater. 47 4253

    [27]

    Gaskell D R 1992 An Introduction to Transport Phenomena in Materials Engineering (New York: MacMillan Publishing Company) p125

    [28]

    Lipton J, Glicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

    [29]

    Alizadeh M, Jahromi A J, Abouali O 2008 ISIJ Int. 48 161

    [30]

    Flemings M C 1991 Metall. Mater. Trans. B 22 269

    [31]

    Meng Y, Thomas B G 2003 Metall. Mater. Trans. B 34 685

    [32]

    Kubota J 1990 Sixth International Iron and Steel Congress Proceeding Nagoya, Japan, October 21-26, 1990 p356

  • [1] Zhang Shi-Jie, Wang Ying-Ming, Wang Qi, Li Chen-Yu, Li Ri. Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Acta Physica Sinica, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [2] Liang Long, Jiao Yang. Microenvironment-enhanced invasive tumor growth via cellular automaton simulations. Acta Physica Sinica, 2015, 64(5): 058706. doi: 10.7498/aps.64.058706
    [3] Chen Rui, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Acta Physica Sinica, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [4] Yang Xiao-Fang, Mao Wei, Fu Qiang. Modeling of bicycle flow based on dynamic floor field and cellular automata. Acta Physica Sinica, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [5] Ren Gang, Lu Li-Li, Wang Wei. Modeling bi-direction pedestrian flow by cellular automata and complex network theories. Acta Physica Sinica, 2012, 61(14): 144501. doi: 10.7498/aps.61.144501
    [6] Yang Xiao-Kuo, Cai Li, Kang Qiang, Li Zheng-Cao, Chen Xiang-Ye, Zhao Xiao-Hui. Theoretical study and experimentation of magnetic quantum-dot cellular automata corner structure. Acta Physica Sinica, 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [7] Shi Yu-Feng, Xu Qing-Yan, Liu Bai-Cheng. Simulation of dendritic growth for ternary alloys based on modified cellular automaton model. Acta Physica Sinica, 2012, 61(10): 108101. doi: 10.7498/aps.61.108101
    [8] Wei Lei, Lin Xin, Wang Meng, Huang Wei-Dong. Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Acta Physica Sinica, 2012, 61(9): 098104. doi: 10.7498/aps.61.098104
    [9] Wang Fu-Lai. A method of digital secure communication based on a cellular automata with rapid dispersion of errors. Acta Physica Sinica, 2011, 60(6): 060501. doi: 10.7498/aps.60.060501
    [10] Song Yu-Rong, Jiang Guo-Ping, Xu Jia-Gang. An epidemic spreading model in adaptive networks based on cellular automata. Acta Physica Sinica, 2011, 60(12): 120509. doi: 10.7498/aps.60.120509
    [11] Wu Meng-Wu, Xiong Shou-Mei. Modeling of regular eutectic growth of binary alloy basedon cellular automaton method. Acta Physica Sinica, 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [12] Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica, 2009, 58(7): 4514-4522. doi: 10.7498/aps.58.4514
    [13] Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica, 2009, 58(2): 830-835. doi: 10.7498/aps.58.830
    [14] Song Yu-Rong, Jiang Guo-Ping. Research of malware propagation in complex networks based on 1-D cellular automata. Acta Physica Sinica, 2009, 58(9): 5911-5918. doi: 10.7498/aps.58.5911
    [15] Zhou Jin-Wang, Chen Xiu-Li, Kong Ling-Jiang, Liu Mu-Ren, Tan Hui-Li, Zhou Jian-Huai. An improved cellular automaton model simulation of pedestrian counter flow with variety velocities. Acta Physica Sinica, 2009, 58(4): 2281-2285. doi: 10.7498/aps.58.2281
    [16] Shan Bo-Wei, Lin Xin, Wei Lei, Huang Wei-Dong. A cellular automaton model for dendrite solidification of pure substance. Acta Physica Sinica, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [17] Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [18] Wu Ke-Fei, Kong Ling-Jiang, Liu Mu-Ren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. Acta Physica Sinica, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [19] Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [20] Li Qiang, Li Dian-Zhong, Qian Bai-Nian. Modeling of dendritic growth by means of cellular automaton method. Acta Physica Sinica, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
Metrics
  • Abstract views:  4551
  • PDF Downloads:  258
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2016
  • Accepted Date:  12 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回