Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization design for magnetoelectric coupling property of the magnet/bimorph composite

Zhang Yuan Gao Yan-Jun Hu Cheng Tan Xing-Yi Qiu Da Zhang Ting-Ting Zhu Yong-Dan Li Mei-Ya

Citation:

Optimization design for magnetoelectric coupling property of the magnet/bimorph composite

Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetoelectric (ME) composite as one kind of ME material that can yield a strong coupling effect between magnetic and electric fields at room temperature, has drawn widespread attention for decades due to its rich physics contents and significant technological prospect. Except for traditional magnetostrictive/piezoelectric based ME composites, other ME composites have been reported, among which the magnet/piezo-cantilever composites show super strong ME coupling effect. The magnet/piezo-cantilever composite is generally composed of a piezoelectric cantilever and magnets attached at the free end of the cantilever, which realizes ME coupling by force moment-mediated magnetic torque effect and piezoelectric effect. Recently, various configurations of the magnet/piezo-cantilever composites for obtaining higher ME coupling coefficients have been proposed and demonstrated experimentally. However, few theoretical researches of these magnet/piezo-cantilever composites of different configurations have been carried out, which is of great importance for optimizing the design of ME coupling property of the magnet/piezo-cantilever composites. Here in this paper, a theoretical expression for the low-frequency ME coupling coefficient in the magnet/piezo-cantilever composite is deduced based on piezoelectric constitutive equations by using the theory of elastic mechanics. The typical magnet/bimorph composite is chosen as the theoretical model. Based on the deduced theoretical expression, the dependences of the lowfrequency ME coupling coefficients in the magnet/bimorph composite on material and structural parameters are numerically calculated. The results show that there are optimal thickness values of the piezoelectric layers in the magnet/bimorph composite with different metal thickness values and material constituents for achieving maximal lowfrequency ME coupling coefficients. The thicker the metal layer in the magnet/bimorph composite, the less insensitive the low-frequency ME coupling coefficient to the thickness of the piezoelectric layer will be. And the low-frequency ME coupling coefficient of the magnet/bimorph composite decreases when a metal with higher elastic module is selected for bimorph. For the magnet/bimorph composite consisting of hard piezoelectric ceramics (PZT-4), the low-frequency ME coupling coefficient is higher than that of the composite consisting of the soft counterpart ones (PZT-5 H), which is due to the hard piezoelectric ceramics with higher piezoelectric voltage coefficient than the soft counterpart ones. What is more interesting is that when the piezoelectric material in the magnet/bimorph composite is changed into relaxor ferroelectric single crystals Pb(Zn1/3 Nb2/3)O3-PbTiO3 (PZN-PT), an extremely high low-frequency ME coupling coefficient can be obtained, which is 3.8 and 5 times those of the 13 composites with hard and soft piezoelectric ceramics, respectively. This research gives a theoretical guidance for optimal design and practical applications of the magnet/Bimorph composite.
      Corresponding author: Zhu Yong-Dan, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn ; Li Mei-Ya, yongdan_zhu@whu.edu.cn;myli@whu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51132001), the National Natural Science Foundation of China (Grant Nos. 11504101, 11364018, 51372174, J1210061), the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB610), and the Excellent Young Innovation Team Project of Hubei Province, China (Grant No. T201429).
    [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Dong S X, Zhai J Y, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [4]

    Dong S X, Zhai J Y, Xing Z P, Li J F, Viehland D 2005 Appl. Phys. Lett. 86 102901

    [5]

    Gao J, Shen L, Wang Y, Gray D, Li J F, Viehland D 2011 J. Appl. Phys. 109 074507

    [6]

    Leung C M, Or S W, Ho S L 2013 Rev. Sci. Instrum. 84 125003

    [7]

    Jia Y M, Xue A X, Zhou Z H, Wu Z, Chen J R, Ma K, Zhang Y H, Zhou J Y, Wang Y, Chan H L W 2013 Int. J. Hydrogen Energy. 38 14915

    [8]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

    [9]

    Fetisov Y K, Srinivasan G 2005 Electron. Lett. 41 1066

    [10]

    Tatarenko A S, Srinivasan G, Bichurin M I 2006 Appl. Phys. Lett. 88 183507

    [11]

    Lou J, Reed D, Liu M, Sun N X 2009 Appl. Phys. Lett. 94 112508

    [12]

    Li Z, Wang J, Lin Y, Nan C W 2010 Appl. Phys. Lett. 96 162505

    [13]

    Hu J M, Li Z, Chen L Q, Nan C W 2011 Nat. Commun. 2 553

    [14]

    Astrov D 1961 Sov. Phys. JETP 13 729

    [15]

    Folen V, Rado G, Stalder E 1961 Phys. Rev. Lett. 6 607

    [16]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [17]

    Nan C W 1994 Phys. Rev. B: Condens. Matter 50 6082

    [18]

    Priya S, Islam R, Dong S X, Viehland D 2007 J. Electroceram. 19 149

    [19]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [20]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 J. Appl. Phys. 40 4948

    [21]

    Srinivasan G 2010 Annu. Rev. Mater. Res. 40 153

    [22]

    Kirchhof C, Krantz M, Teliban I, Jahns R, Marauska S, Wagner B, Knöchel R, Gerken M, Meyners D, Quandt E 2013 Appl. Phys. Lett. 102 232905

    [23]

    Leung C M, Or S W, Ho S L, Lee K Y 2014 IEEE Sens. J. 14 4305

    [24]

    Jia Y M, Zhou D, Luo L H, Zhao X Y, Luo H S, Or S W, Chan H L W 2007 Appl. Phys. A 89 1025

    [25]

    Lu S G, Fang Z, Furman E, Wang Y, Zhang Q M, Mudryk Y, Gschneidner K A, Pecharsky V K, Nan C W 2010 Appl. Phys. Lett. 96 102902

    [26]

    Xing Z P, Li J F, Viehland D 2008 Appl. Phys. Lett. 93 013505

    [27]

    Xing Z P, Xu K, Dai G Y, Li J F, Viehland D 2011 J. Appl. Phys. 110 104510

    [28]

    Xing Z P, Xu K 2013 Sens. Actuators A 189 182

    [29]

    Liu G X, Li X T, Chen J G, Shi H D, Xiao W L, Dong S X 2012 Appl. Phys. Lett. 101 142904

    [30]

    Radchenko G S, Radchenko M G 2014 Tech. Phys. 50 1457

    [31]

    Liu G X, Ci P H, Dong S X 2014 J. Appl. Phys. 115 164104

    [32]

    Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Arrays (Revised Edition) (Beijing: Peking Univ. Press) p93 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (修订版) (北京: 北京大学出版社) 第93页]

    [33]

    Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908

  • [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Dong S X, Zhai J Y, Bai F M, Li J F, Viehland D 2005 Appl. Phys. Lett. 87 062502

    [4]

    Dong S X, Zhai J Y, Xing Z P, Li J F, Viehland D 2005 Appl. Phys. Lett. 86 102901

    [5]

    Gao J, Shen L, Wang Y, Gray D, Li J F, Viehland D 2011 J. Appl. Phys. 109 074507

    [6]

    Leung C M, Or S W, Ho S L 2013 Rev. Sci. Instrum. 84 125003

    [7]

    Jia Y M, Xue A X, Zhou Z H, Wu Z, Chen J R, Ma K, Zhang Y H, Zhou J Y, Wang Y, Chan H L W 2013 Int. J. Hydrogen Energy. 38 14915

    [8]

    Yu X J, Wu T Y, Li Z 2013 Acta Phys. Sin. 62 058503 (in Chinese) [于歆杰, 吴天逸, 李臻 2013 物理学报 62 058503]

    [9]

    Fetisov Y K, Srinivasan G 2005 Electron. Lett. 41 1066

    [10]

    Tatarenko A S, Srinivasan G, Bichurin M I 2006 Appl. Phys. Lett. 88 183507

    [11]

    Lou J, Reed D, Liu M, Sun N X 2009 Appl. Phys. Lett. 94 112508

    [12]

    Li Z, Wang J, Lin Y, Nan C W 2010 Appl. Phys. Lett. 96 162505

    [13]

    Hu J M, Li Z, Chen L Q, Nan C W 2011 Nat. Commun. 2 553

    [14]

    Astrov D 1961 Sov. Phys. JETP 13 729

    [15]

    Folen V, Rado G, Stalder E 1961 Phys. Rev. Lett. 6 607

    [16]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [17]

    Nan C W 1994 Phys. Rev. B: Condens. Matter 50 6082

    [18]

    Priya S, Islam R, Dong S X, Viehland D 2007 J. Electroceram. 19 149

    [19]

    Ryu J, Priya S, Carazo A V, Uchino K, Kim H E 2001 J. Am. Ceram. Soc. 84 2905

    [20]

    Ryu J, Carazo A V, Uchino K, Kim H E 2001 J. Appl. Phys. 40 4948

    [21]

    Srinivasan G 2010 Annu. Rev. Mater. Res. 40 153

    [22]

    Kirchhof C, Krantz M, Teliban I, Jahns R, Marauska S, Wagner B, Knöchel R, Gerken M, Meyners D, Quandt E 2013 Appl. Phys. Lett. 102 232905

    [23]

    Leung C M, Or S W, Ho S L, Lee K Y 2014 IEEE Sens. J. 14 4305

    [24]

    Jia Y M, Zhou D, Luo L H, Zhao X Y, Luo H S, Or S W, Chan H L W 2007 Appl. Phys. A 89 1025

    [25]

    Lu S G, Fang Z, Furman E, Wang Y, Zhang Q M, Mudryk Y, Gschneidner K A, Pecharsky V K, Nan C W 2010 Appl. Phys. Lett. 96 102902

    [26]

    Xing Z P, Li J F, Viehland D 2008 Appl. Phys. Lett. 93 013505

    [27]

    Xing Z P, Xu K, Dai G Y, Li J F, Viehland D 2011 J. Appl. Phys. 110 104510

    [28]

    Xing Z P, Xu K 2013 Sens. Actuators A 189 182

    [29]

    Liu G X, Li X T, Chen J G, Shi H D, Xiao W L, Dong S X 2012 Appl. Phys. Lett. 101 142904

    [30]

    Radchenko G S, Radchenko M G 2014 Tech. Phys. 50 1457

    [31]

    Liu G X, Ci P H, Dong S X 2014 J. Appl. Phys. 115 164104

    [32]

    Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric Transducers and Arrays (Revised Edition) (Beijing: Peking Univ. Press) p93 (in Chinese) [栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (修订版) (北京: 北京大学出版社) 第93页]

    [33]

    Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908

  • [1] Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng. Optimization strategies for energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [2] Tan Song-Lin, Zhuang Yong-Qi, Yi Jian-Hong. Preparation and properties of multi-walled carbon nanotube reinforced alumina composites by sol- spray method. Acta Physica Sinica, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [3] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [4] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [5] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] Yu Bin, Hu Zhong-Qiang, Cheng Yu-Xin, Peng Bin, Zhou Zi-Yao, Liu Ming. Recent progress of multiferroic magnetoelectric devices. Acta Physica Sinica, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [7] Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo. Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films. Acta Physica Sinica, 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [8] Li Zhen-Wu. Opto-electronic properties of the single-walled carbon nanotube film and melamine formaldehyde resin composite. Acta Physica Sinica, 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [9] Tang Wei, Wang Xiao-Pu, Cao Jing-Jun. Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics. Acta Physica Sinica, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [10] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Hao Juan. Investigation on characteristics of solar cells made of MOPPV/ZnSe quantum dots composite system. Acta Physica Sinica, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [11] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan. Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites. Acta Physica Sinica, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [12] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [13] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [14] Huo Yan, Zhang Cun-Lin. Quantitative infrared prediction method for defect depth in carbon fiber reinforced plastics composite. Acta Physica Sinica, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [15] Zhou Li-Mei, Li Wei, Jiang Jun, Chen Jian-Min, Li Yong, Xu Gao-Jie. Preparation and thermoelectric properties of β-Zn4Sb3/Zn1-δAlδO. Acta Physica Sinica, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [16] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [17] Sun Jian-Ping, Weng Jia-Bao, Huang Xiao-Zhu, Ma Lin-Pu. In-situ polymerization and properties of poly (2,5-dibutyloxy-1,4-phenylene vinylene)/multi-walled carbon nanotube composites. Acta Physica Sinica, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [18] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [19] Zhou Jian-Ping, Shi Zhan, Liu Gang, He Hong-Cai, Nan Ce-Wen. Analysis of magnetoelectric properties of ferroelectric and ferromagnetic columnar composites. Acta Physica Sinica, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [20] Shi Zhan, Nan Ce-Wen. Calculations of magnetoelectric properties in three-phase ferroelectric and ferromagnetic particulate composites. Acta Physica Sinica, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
Metrics
  • Abstract views:  4870
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  06 May 2016
  • Accepted Date:  12 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回