Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of electrochromic performances of WO3

Fang Cheng Wang Hong Shi Si-Qi

Citation:

Research progress of electrochromic performances of WO3

Fang Cheng, Wang Hong, Shi Si-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • From the aspects of both experimental studies and first-principles calculation, we review the research progress of improving the electrochromic performances of WO3, and analyze the transformation tendency in applied field, performance requirement and research focus. Due to the low color-switching, the application field of WO3 shifts from display devices to smart windows or other energy-saving devices. According to the requirement for electrochromic performance, the concerned WO3 morphology changes from amorphous form to nanostructure. For the high desire of smart windows in large-area curtain walls, the solid state inorganic electrochromic materials with lithium ion conductors are used as substitutes for the organic electrochromic films in hydrogen ion electrolytic solution. Correspondingly, response time and cycle life are regarded as the most important performance indices. Doping and synthesizing nanostructure are considered to be the main methods to improve electrochromic performance by introducing the pores into the crystals as the ion diffusion path. Especially, the nano-crystalline WO3 attracts much attention, due to its high stability and quick color switching. In the respect of the first-principles calculation, the simple cubic WO3 is a widely used model for calculation, because of its simple structure and high symmetry. However, there always occur the underestimation of band gap and the incorrect relationship between the cell sizes of WO3 and LiWO3. In response to the problem, by analyzing the Li-intercalated WO3 configuration, it is found that the lattice parameter is closely associated with the interaction between lithium and oxygen. The large discrepancy between the experimental and calculated band gaps is primarily due to the omission of the structural distortion in the calculation, including tilting of WO6 octahedra, as well as the off-centering of W in octahedral caused by the second-order Jahn-Teller effect. According to this, we propose a distorted cubic WO3 model (Im3 space group) to better explain the relevant experimental results. In light of the achieved results and the encountered problems in recent researches, it is generally received that the industrialization of nano-crystalline WO3 and systematic calculation on the lithium diffusion in WO3 deserve the serious consideration. In addition, possessing the function of blocking near-infrared and visible light selectively is the trend for the next generation electrochromic materials. Therefore, the noteworthy development directions on the aspect of both experimental studies and first-principles calculation are pointed out to provide some valuable references for the further researches.
      Corresponding author: Wang Hong, hongwang2@cbmamail.com.cn;sqshi@shu.edu.cn ; Shi Si-Qi, hongwang2@cbmamail.com.cn;sqshi@shu.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Plan of China (Grant No. 2015AA034204) and the Beijing Municipal Science and Technology Commission Special Fund, China (Grant No. Z151100001615038).
    [1]

    Zhang Y Z, Hu X F 2003 The 21st Century’s New Technology of Solar Energy Shanghai, October 10-12, 2003 200050 (in Chinese) [章俞之, 胡行方 2003 21世纪太阳能新技术, 上海, 10月10-12, 2003 200050]

    [2]

    Chen Y, Xu Z, Sun J L, Deng H T, Chen H T, Zhao S L 2013 J. Funct. Mater. 17 2441 (in Chinese) [陈怡, 徐征, 孙金礼, 邓恒涛, 陈海涛, 赵谡玲 2013 功能材料 17 2441]

    [3]

    Ma D Y 2013 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese) [马董云 2013 博士学位论文 (上海: 东华大学)]

    [4]

    Walkingshaw A D, Spaldin N A, Artacho E 2004 Phys. Rev. B 70 165110

    [5]

    Daniel M F, Desbat B, Lassegues J C 1987 J. Solid State Chem. 67 235

    [6]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [7]

    Zhong Q, Dahn J R, Colbow K 1992 Phys. Rev. B 46 2554

    [8]

    Bullett D W 1983 J. Phys. C: Solid State Phys. 16 2197

    [9]

    Kong Y Q, Sun H G, Zhao X, Gao B Y, Fan W L 2015 Appl. Catal. A: General 505 447

    [10]

    Kim W, Tachikawa T, Monllor-Satoca D, Kim H, Majima T, Choi W 2013 Energy Environ. Sci. 6 3732

    [11]

    Huang K, Zhang Q 2012 Nano Energy 1 172

    [12]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S, Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [13]

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301 (in Chinese) [秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301]

    [14]

    Ashrit P V 2001 Thin Solid Films 385 81

    [15]

    Deb S K 1969 Appl. Opt. Suppl. 3 193

    [16]

    Cai G F, Wang X L, Zhou D, Zhang J H, Xiong Q Q, Gu C D, Tu J P 2013 RSC Adv. 3 6896

    [17]

    Sun X L, Liu Z M, Cao H T 2011 Thin Solid Films 519 3032

    [18]

    Chang X T, Sun S B, Dong L H, Dong Y H, Yin Y S 2014 RSC Adv. 4 8994

    [19]

    Hepel M, Redmond H 2009 Cent. Eur. J. Chem. 7 234

    [20]

    Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201

    [21]

    Mitsugi F, Nakamura A, Kodama Y, Ohkubo T, Nomoto Y 2007 Thin Solid Films 515 4159

    [22]

    Hung C J, Huang Y H, Chen C H, Lin P, Tseng T Y 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 831

    [23]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [24]

    Granqvist C G 1995 Handbook of Inorganic Electrochromic Materials (Amsterdam: Elsevier) pp21-142

    [25]

    O-Rueda de León J M, Acosta D R, Castañeda L 2011 Electrochim. Acta 56 2599

    [26]

    Monk P M S, Ali T, Partridge R D 1995 Solid State Ionics 80 75

    [27]

    Shen Q Y, Lu C H, Xu Z Z 2007 Mater. Rev. 21 284 (in Chinese) [沈庆月, 陆春华, 许仲梓 2007 材料导报 21 284]

    [28]

    Lampert C M 1984 Sol. Energy Mater. 11 1

    [29]

    Meenakshi M, Gowthami V, Perumal P, Sivakumar R, Sanjeeviraja C 2015 Electrochim. Acta 174 302

    [30]

    Poongodi S, Kumar P S, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S 2015 RSC Adv. 5 96416

    [31]

    Kondalkar V V, Mali S S, Kharade R R, Khot K V, Patil P B, Mane R M, Choudhury S, Patil P S, Hong C K, Kim J H, Bhosale P N 2015 Dalton Trans. 44 2788

    [32]

    Shen P K, Syed-Bokhari J, Tseung A C C 1991 J. Electrochem. Soc. 138 2778

    [33]

    Niu W, Wang Y, Hu W, Zheng N 2013 Guangzhou Chem. Ind. 41 1 (in Chinese) [牛微, 王玉, 胡伟, 郑楠 2013 广州化工 41 1]

    [34]

    Horwat D, Pierson J F, Billard A 2008 Ionics 14 227

    [35]

    Yoo S J, Lim J W, Sung Y E 2006 Sol. Energy Mater. Sol. Cells 90 477

    [36]

    Her Y C, Chang C C 2014 Cryst. Eng. Comm. 16 5379

    [37]

    Gracia L, García-Cañadas J, Garcia-Belmonte G, Beltrán A, Andrés J, Bisquert J 2005 Electrochem. Solid-State Lett. 8 21

    [38]

    Sallard S, Brezesinski T, Smarsly B M 2007 J. Phys. Chem. C 111 7200

    [39]

    Golestani Y M, Alsawafta M, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 909

    [40]

    Yang X S, Wang Y, Dong L, Zhang F, Qi L Z 2004 Acta Phys. Sin. 53 2724 (in Chinese) [羊新胜, 王豫, 董亮, 张锋, 齐立桢 2004 物理学报 53 2724]

    [41]

    Heckner K H, Kraft A 2002 Solid State Ionics 152 899

    [42]

    Rui X H, Ding N, Liu J, Li C, Chen C H 2010 Electrochim. Acta 55 2384

    [43]

    Li W, Hu C, Zhou M, Wang K L, Li H M, Cheng S J, Jiang K 2016 Electrochim. Acta 189 231

    [44]

    Yi T F, Yang S Y, Tao M, Xie Y, Zhu Y R, Zhu R S 2014 Electrochim. Acta 134 377

    [45]

    Yang S Y, Wang X Y, Yang X K, Bai Y S, Liu Z L, Shu H B, Wei Q L 2012 Electrochim. Acta 66 88

    [46]

    Takai S, Yoshioka K, Iikura H, Matsubayashi M, Yao T, Esaka T 2014 Solid State Ionics 256 93

    [47]

    Avellaneda C O 2007 Mater. Sci. Eng. B 138 123

    [48]

    Yu P F, Cui Z H, Fan W G, Guo X X 2013 Chin. Phys. B 22 038101

    [49]

    Kondalkar V V, Mali S S, Kharade R R, Mane R M, Patil P S, Hong C K, Kim J H, Choudhury S, Bhosale P N 2015 RSC Adv. 5 26923

    [50]

    Alsawafta M, Golestani Y M, Phonemac T, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 276

    [51]

    Lin H, Zhou F, Liu C P, Ozoliņš V 2014 J. Mater. Chem. A 2 12280

    [52]

    Broclawik E, Góra A, Liguzinski P, Petelenz P, Slawik M 2005 Catal. Today 101 155

    [53]

    Xi Y J, Zhang Q F, Cheng H S 2014 J. Phys. Chem. C 118 494

    [54]

    Wijs G A, Boer P K, Groot R A 1999 Phys. Rev. B 59 2684

    [55]

    Lambert-Mauriat C, Oison V, Saadi L, Aguir K 2012 Surf. Sci. 606 40

    [56]

    Strømme M, Ahuja R, Niklasson G A 2004 Phys. Rev. Lett. 93 206403

    [57]

    Granqvist C G, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson G A, Ribbing C G, Rönnow D, Mattsson M S, Veszelei M 1997 J. Non-Cryst. Solids 218 273

    [58]

    Azens A, Hjelm A, Bellac D L, Granqvist C G, Barczynskab J, Pentjuss E, Gabrusenoks J, Wills J M 1996 Solid State Ionics 86 943

    [59]

    Hjelm A, Granqvist C G 1996 Phys. Rev. B 54 2436

    [60]

    Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A, Deb S 2003 Phys. Rev. B 68 233204

    [61]

    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175

    [62]

    Wiseman P J, Dickens P G 1976 J. Solid State Chem. 17 91

    [63]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [64]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [65]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [66]

    Llordés A, Garcia G, Gazquez J, Milliron D J 2013 Nature 500 323

  • [1]

    Zhang Y Z, Hu X F 2003 The 21st Century’s New Technology of Solar Energy Shanghai, October 10-12, 2003 200050 (in Chinese) [章俞之, 胡行方 2003 21世纪太阳能新技术, 上海, 10月10-12, 2003 200050]

    [2]

    Chen Y, Xu Z, Sun J L, Deng H T, Chen H T, Zhao S L 2013 J. Funct. Mater. 17 2441 (in Chinese) [陈怡, 徐征, 孙金礼, 邓恒涛, 陈海涛, 赵谡玲 2013 功能材料 17 2441]

    [3]

    Ma D Y 2013 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese) [马董云 2013 博士学位论文 (上海: 东华大学)]

    [4]

    Walkingshaw A D, Spaldin N A, Artacho E 2004 Phys. Rev. B 70 165110

    [5]

    Daniel M F, Desbat B, Lassegues J C 1987 J. Solid State Chem. 67 235

    [6]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [7]

    Zhong Q, Dahn J R, Colbow K 1992 Phys. Rev. B 46 2554

    [8]

    Bullett D W 1983 J. Phys. C: Solid State Phys. 16 2197

    [9]

    Kong Y Q, Sun H G, Zhao X, Gao B Y, Fan W L 2015 Appl. Catal. A: General 505 447

    [10]

    Kim W, Tachikawa T, Monllor-Satoca D, Kim H, Majima T, Choi W 2013 Energy Environ. Sci. 6 3732

    [11]

    Huang K, Zhang Q 2012 Nano Energy 1 172

    [12]

    Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S, Ding Y, Wang Z L 2006 Appl. Phys. Lett. 88 203101

    [13]

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301 (in Chinese) [秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301]

    [14]

    Ashrit P V 2001 Thin Solid Films 385 81

    [15]

    Deb S K 1969 Appl. Opt. Suppl. 3 193

    [16]

    Cai G F, Wang X L, Zhou D, Zhang J H, Xiong Q Q, Gu C D, Tu J P 2013 RSC Adv. 3 6896

    [17]

    Sun X L, Liu Z M, Cao H T 2011 Thin Solid Films 519 3032

    [18]

    Chang X T, Sun S B, Dong L H, Dong Y H, Yin Y S 2014 RSC Adv. 4 8994

    [19]

    Hepel M, Redmond H 2009 Cent. Eur. J. Chem. 7 234

    [20]

    Granqvist C G 2000 Sol. Energy Mater. Sol. Cells 60 201

    [21]

    Mitsugi F, Nakamura A, Kodama Y, Ohkubo T, Nomoto Y 2007 Thin Solid Films 515 4159

    [22]

    Hung C J, Huang Y H, Chen C H, Lin P, Tseng T Y 2014 IEEE Trans. Compon. Packag. Manuf. Technol. 4 831

    [23]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [24]

    Granqvist C G 1995 Handbook of Inorganic Electrochromic Materials (Amsterdam: Elsevier) pp21-142

    [25]

    O-Rueda de León J M, Acosta D R, Castañeda L 2011 Electrochim. Acta 56 2599

    [26]

    Monk P M S, Ali T, Partridge R D 1995 Solid State Ionics 80 75

    [27]

    Shen Q Y, Lu C H, Xu Z Z 2007 Mater. Rev. 21 284 (in Chinese) [沈庆月, 陆春华, 许仲梓 2007 材料导报 21 284]

    [28]

    Lampert C M 1984 Sol. Energy Mater. 11 1

    [29]

    Meenakshi M, Gowthami V, Perumal P, Sivakumar R, Sanjeeviraja C 2015 Electrochim. Acta 174 302

    [30]

    Poongodi S, Kumar P S, Masuda Y, Mangalaraj D, Ponpandian N, Viswanathan C, Ramakrishna S 2015 RSC Adv. 5 96416

    [31]

    Kondalkar V V, Mali S S, Kharade R R, Khot K V, Patil P B, Mane R M, Choudhury S, Patil P S, Hong C K, Kim J H, Bhosale P N 2015 Dalton Trans. 44 2788

    [32]

    Shen P K, Syed-Bokhari J, Tseung A C C 1991 J. Electrochem. Soc. 138 2778

    [33]

    Niu W, Wang Y, Hu W, Zheng N 2013 Guangzhou Chem. Ind. 41 1 (in Chinese) [牛微, 王玉, 胡伟, 郑楠 2013 广州化工 41 1]

    [34]

    Horwat D, Pierson J F, Billard A 2008 Ionics 14 227

    [35]

    Yoo S J, Lim J W, Sung Y E 2006 Sol. Energy Mater. Sol. Cells 90 477

    [36]

    Her Y C, Chang C C 2014 Cryst. Eng. Comm. 16 5379

    [37]

    Gracia L, García-Cañadas J, Garcia-Belmonte G, Beltrán A, Andrés J, Bisquert J 2005 Electrochem. Solid-State Lett. 8 21

    [38]

    Sallard S, Brezesinski T, Smarsly B M 2007 J. Phys. Chem. C 111 7200

    [39]

    Golestani Y M, Alsawafta M, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 909

    [40]

    Yang X S, Wang Y, Dong L, Zhang F, Qi L Z 2004 Acta Phys. Sin. 53 2724 (in Chinese) [羊新胜, 王豫, 董亮, 张锋, 齐立桢 2004 物理学报 53 2724]

    [41]

    Heckner K H, Kraft A 2002 Solid State Ionics 152 899

    [42]

    Rui X H, Ding N, Liu J, Li C, Chen C H 2010 Electrochim. Acta 55 2384

    [43]

    Li W, Hu C, Zhou M, Wang K L, Li H M, Cheng S J, Jiang K 2016 Electrochim. Acta 189 231

    [44]

    Yi T F, Yang S Y, Tao M, Xie Y, Zhu Y R, Zhu R S 2014 Electrochim. Acta 134 377

    [45]

    Yang S Y, Wang X Y, Yang X K, Bai Y S, Liu Z L, Shu H B, Wei Q L 2012 Electrochim. Acta 66 88

    [46]

    Takai S, Yoshioka K, Iikura H, Matsubayashi M, Yao T, Esaka T 2014 Solid State Ionics 256 93

    [47]

    Avellaneda C O 2007 Mater. Sci. Eng. B 138 123

    [48]

    Yu P F, Cui Z H, Fan W G, Guo X X 2013 Chin. Phys. B 22 038101

    [49]

    Kondalkar V V, Mali S S, Kharade R R, Mane R M, Patil P S, Hong C K, Kim J H, Choudhury S, Bhosale P N 2015 RSC Adv. 5 26923

    [50]

    Alsawafta M, Golestani Y M, Phonemac T, Badilescu S, Stancovski V, Truong V V 2014 J. Electrochem. Soc. 161 276

    [51]

    Lin H, Zhou F, Liu C P, Ozoliņš V 2014 J. Mater. Chem. A 2 12280

    [52]

    Broclawik E, Góra A, Liguzinski P, Petelenz P, Slawik M 2005 Catal. Today 101 155

    [53]

    Xi Y J, Zhang Q F, Cheng H S 2014 J. Phys. Chem. C 118 494

    [54]

    Wijs G A, Boer P K, Groot R A 1999 Phys. Rev. B 59 2684

    [55]

    Lambert-Mauriat C, Oison V, Saadi L, Aguir K 2012 Surf. Sci. 606 40

    [56]

    Strømme M, Ahuja R, Niklasson G A 2004 Phys. Rev. Lett. 93 206403

    [57]

    Granqvist C G, Azens A, Isidorsson J, Kharrazi M, Kullman L, Lindström T, Niklasson G A, Ribbing C G, Rönnow D, Mattsson M S, Veszelei M 1997 J. Non-Cryst. Solids 218 273

    [58]

    Azens A, Hjelm A, Bellac D L, Granqvist C G, Barczynskab J, Pentjuss E, Gabrusenoks J, Wills J M 1996 Solid State Ionics 86 943

    [59]

    Hjelm A, Granqvist C G 1996 Phys. Rev. B 54 2436

    [60]

    Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A, Deb S 2003 Phys. Rev. B 68 233204

    [61]

    Zheng H D, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar-zadeh K 2011 Adv. Funct. Mater. 21 2175

    [62]

    Wiseman P J, Dickens P G 1976 J. Solid State Chem. 17 91

    [63]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [64]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [65]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [66]

    Llordés A, Garcia G, Gazquez J, Milliron D J 2013 Nature 500 323

  • [1] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] Shao Guang-Wei, Yu Rui, Fu Ting, Chen Nan-Liang, Liu Xiang-Yang. Growth behavior of WO3 crystal topological structure and its electrochromic properties. Acta Physica Sinica, 2022, 71(2): 028201. doi: 10.7498/aps.71.20211555
    [5] Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi. Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films. Acta Physica Sinica, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [6] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] Zhao Bo-Shuo, Qiang Xiao-Yong, Qin Yue, Hu Ming. Tungsten oxide nanowire gas sensor preparation and P-type NO2 sensing properties at room temperature. Acta Physica Sinica, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [9] Shao Zi-Qiao, Bi Heng-Chang, Xie Xiao, Wan Neng, Sun Li-Tao. Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation. Acta Physica Sinica, 2018, 67(16): 167802. doi: 10.7498/aps.67.20180663
    [10] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [12] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [13] Li Xue-Mei, Han Hui-Lei, He Guang-Pu. Lattice dynamical, dielectric and thermodynamic properties of LiNH2 from first principles. Acta Physica Sinica, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [14] Yu Song-Nan, Wu Han-Hua, Chen Gen-Yu, Yuan Xin, Li Yue. Effect of Al(OH)3 sol concentration on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [15] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [16] Song Qing-Gong, Jiang En-Yong. Study on the structural and energetic properties of two-dimensional ground state of Ag+ ion-vacancy in fast ionic conductor AgxTiS2. Acta Physica Sinica, 2008, 57(3): 1823-1828. doi: 10.7498/aps.57.1823
    [17] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [18] Yang Xin-Sheng, Wang Yu, Dong Liang, Zhang Feng, Qi Li-Zhen. Electrochromic effect of nanostructured WO3 bulk. Acta Physica Sinica, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [19] Dai Fu-Ping, Lü Shu-Yuan, Feng Bo-Xue, Jiang Sheng-Rui, Chen Chong. Study on electrochromic performances of amorphous WO3 films. Acta Physica Sinica, 2003, 52(4): 1003-1008. doi: 10.7498/aps.52.1003
    [20] FENG BO-XUE, XIE LIANG, WANG JUN, JIANG SHENG-RUI, CHEN GUANG-HUA. STUDY ON ELECTROCHROMIC PERFORMANCES AND MECHANISM OF MICROCRYSTAL NiOxHy THIN FILMS FABRICATED BY R.F.DEPOSITION. Acta Physica Sinica, 2000, 49(10): 2066-2071. doi: 10.7498/aps.49.2066
Metrics
  • Abstract views:  8422
  • PDF Downloads:  1005
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2016
  • Accepted Date:  05 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回