Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wireless power transfer system based on toroidal metamaterials

Zhao Jun-Fei Zhang Ye-Wen Li Yun-Hui Chen Yong-Qiang Fang Kai He Li

Citation:

Wireless power transfer system based on toroidal metamaterials

Zhao Jun-Fei, Zhang Ye-Wen, Li Yun-Hui, Chen Yong-Qiang, Fang Kai, He Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Now, the traditional four-coil magnetic coupling systems have been used in the wireless charging of mobile electronic devices and electric vehicles. However, the system efficiency is difficult to improve due to the divergence of spatial distribution of magnetic field. To overcome this disadvantage, we propose an efficient system based on the toroidal metamaterials, which support a resonant electromagnetic mode that is dominated by the toroidal moment. The toroidal moment is produced by currents flowing on the surface of a torus along its meridian. It presents remarkable ability to localize the field and suppress the radiation. This new toroidal magnetic mode system (TMMS) consists of four asymmetric split resonant rings (ASRRs). Pairs of ASRRs in the same unit (transmit unit and receiver unit) have mirror symmetry about the yz plane. Pairs of ASRRs in different units have 180 rotational symmetry about the x axis. These four rings support the toroidal magnetic resonant mode (dominated by toroidal moment). For comparison, we also construct two symmetric split resonant rings to imitate the four-coil system (FCS). It supports parallel magnetic mode (dominated by magnetic dipole moment) and antiparallel magnetic mode (dominated by magnetic dipole moment and magnetic quadrupole moment). To confirm the improvement of efficiency, we compare the transmission of the TMMS with that of the FCS at the same transfer distance (10 mm). The TMMS presents a higher transmission and the increase in simulation (experiment) is 81% (40%). The toroidal magnetic mode in the TMMS also exhibits low metal loss, which is reflected in these spectra. The simulated distributions of magnetic field line corresponding to the resonantly magnetic modes in both systems are provided in this article. Instead of divergence in FCS, the magnetic field lines of TMMS are well constrained around the four rings and form closed loops along these rings. The density of the field line and the magnitude of field near the receiving coil are both enhanced. So the system efficiency, which is determined by the magnetic flux of the receiving coil, is improved. The dispersions of radiation power for various induced multipole moments from the two systems are also calculated. The dominance of toroidal moment corresponding to the resonant mode in TMMS is verified and the radiation is suppressed to 1/4 of FCS. Finally, the transmissions of two systems at different transfer distances are presented. The toroidal magnetic mode system presents a higher efficiency at strong coupling area (0-25 mm). The average increase of the transmission in simulation (experiment) is 73% (46%). In summary, the proposed new system exhibits the properties of high efficiency, low metal loss and low radiation loss with the multiport output. It would have broad prospects of practical application in WPT.
      Corresponding author: Zhang Ye-Wen, yewen.zhang@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB922001) and the National Natural Science Foundation of China (Grant Nos. 51377003, 11234010).
    [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [3]

    Hamam R E, Karalis A, Joannopoulos J D, Soljacic M 2009 Ann. Phys. 324 1783

    [4]

    Oh K S, Lee W S, Lee W S, Yu J W 2012 Appl. Phys. Lett. 101 064105

    [5]

    Lee W S, Lee H L, Oh K S, Yu J W 2012 Appl. Phys. Lett. 100 214105

    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [10]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [11]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [12]

    Urzhumov Y, Smith D R 2011 Phys. Rev. B: Condens. Matter 83 205114

    [13]

    Wang B N, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J Y 2011 Appl. Phys. Lett. 98 254101

    [14]

    Ranaweera A L A K, Moscoso C A, Lee J W 2015 J. Phys. D: Appl. Phys. 48 455104

    [15]

    Chabalko M J, Ricketts D S 2015 Appl. Phys. Lett. 106 062401

    [16]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801

    [17]

    Yu X F, Sandhu S, Beiker S, Sassoon R, Fan S H 2011 Appl. Phys. Lett. 99 214102

    [18]

    Wu J, Wang B N, Yerazunis W S, Teo K H 2013 IEEE Wireless Power Transfer Perugia, Italy, May 15-16, 2013 p155

    [19]

    Zeldovich Y B 1958 Sov. Phys. JETP 6 1184

    [20]

    Haxton W C 1997 Science 275 1753

    [21]

    Afanasiev G N 2001 J. Phys. D: Appl. Phys. 34 539

    [22]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510

    [23]

    Dong Z G, Zhu J, Rho J, Li J Q, Lu C G, Yin X B, Zhang X 2012 Appl. Phys. Lett. 101 144105

    [24]

    Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken P A 2012 Nano Lett. 12 5239

    [25]

    Fan Y C, Wei Z Y, Li H Q, Chen H, Soukoulis C M 2013 Phys. Rev. B: Condens. Matter 87 115417

    [26]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [27]

    Huang Y W, Chen W T, Wu P C, Fedotov V A, Zheludev N I, Tsai D P 2013 Sci. Rep. 3 1237

    [28]

    Ye Q W, Guo L Y, Li M H, Liu Y, Xiao B X, Yang H L 2013 Phys. Scr. 88 055002

    [29]

    Kim N Y, Kim K Y, Kim C W 2012 Microw. Opt. Tech. Lett. 54 1423

    [30]

    Radescu E E, Vaman G 2002 Phys. Rev. E 65 046609

  • [1]

    Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

    [2]

    Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34

    [3]

    Hamam R E, Karalis A, Joannopoulos J D, Soljacic M 2009 Ann. Phys. 324 1783

    [4]

    Oh K S, Lee W S, Lee W S, Yu J W 2012 Appl. Phys. Lett. 101 064105

    [5]

    Lee W S, Lee H L, Oh K S, Yu J W 2012 Appl. Phys. Lett. 100 214105

    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]

    Xi S, Chen H, Jiang T, Ran L, Huangfu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [10]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [11]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [12]

    Urzhumov Y, Smith D R 2011 Phys. Rev. B: Condens. Matter 83 205114

    [13]

    Wang B N, Teo K H, Nishino T, Yerazunis W, Barnwell J, Zhang J Y 2011 Appl. Phys. Lett. 98 254101

    [14]

    Ranaweera A L A K, Moscoso C A, Lee J W 2015 J. Phys. D: Appl. Phys. 48 455104

    [15]

    Chabalko M J, Ricketts D S 2015 Appl. Phys. Lett. 106 062401

    [16]

    Li C L, Guo J, Zhang P, Yu Q Q, Ma W T, Miao X G, Zhao Z Y, Luan L 2014 Chin. Phys. Lett. 31 077801

    [17]

    Yu X F, Sandhu S, Beiker S, Sassoon R, Fan S H 2011 Appl. Phys. Lett. 99 214102

    [18]

    Wu J, Wang B N, Yerazunis W S, Teo K H 2013 IEEE Wireless Power Transfer Perugia, Italy, May 15-16, 2013 p155

    [19]

    Zeldovich Y B 1958 Sov. Phys. JETP 6 1184

    [20]

    Haxton W C 1997 Science 275 1753

    [21]

    Afanasiev G N 2001 J. Phys. D: Appl. Phys. 34 539

    [22]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510

    [23]

    Dong Z G, Zhu J, Rho J, Li J Q, Lu C G, Yin X B, Zhang X 2012 Appl. Phys. Lett. 101 144105

    [24]

    Ogut B, Talebi N, Vogelgesang R, Sigle W, van Aken P A 2012 Nano Lett. 12 5239

    [25]

    Fan Y C, Wei Z Y, Li H Q, Chen H, Soukoulis C M 2013 Phys. Rev. B: Condens. Matter 87 115417

    [26]

    Fedotov V A, Rogacheva A V, Savinov V, Tsai D P, Zheludev N I 2013 Sci. Rep. 3 2967

    [27]

    Huang Y W, Chen W T, Wu P C, Fedotov V A, Zheludev N I, Tsai D P 2013 Sci. Rep. 3 1237

    [28]

    Ye Q W, Guo L Y, Li M H, Liu Y, Xiao B X, Yang H L 2013 Phys. Scr. 88 055002

    [29]

    Kim N Y, Kim K Y, Kim C W 2012 Microw. Opt. Tech. Lett. 54 1423

    [30]

    Radescu E E, Vaman G 2002 Phys. Rev. E 65 046609

  • [1] Yang Xu-Yun, Chen Yong-Cong, Lu Wen-Bin, Zhu Xiao-Mei, Ao Ping. Energy transfer in photosynthesis mediated by resonant confinement of exciton-polariton. Acta Physica Sinica, 2022, 71(23): 234202. doi: 10.7498/aps.71.20221412
    [2] Zeng Min, Luo Ying, Jiang Hong. Wireless power transfer supported device-to-device multicast energy cooperative transmission scheme. Acta Physica Sinica, 2022, 71(16): 168801. doi: 10.7498/aps.71.20220345
    [3] Bi Si-Han, Song Jian-Jun, Zhang Dong, Zhang Shi-Qi. A Ge-based dual channel rectified single ended Schottky barrier field effect transistor for 2.45 GHz microwave wireless energy transmission. Acta Physica Sinica, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [4] Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun. Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer. Acta Physica Sinica, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [5] Shi Tai-Xia, Dong Li-Juan, Chen Yong-Qiang, Liu Yan-Hong, Liu Li-Xiang, Shi Yun-Long. Regulation of spatial fields in wireless power transfer with artificial magnetic conductor. Acta Physica Sinica, 2019, 68(21): 214203. doi: 10.7498/aps.68.20190862
    [6] Zhang Ke-Han, Yan Long-Bin, Yan Zheng-Chao, Wen Hai-Bing, Song Bao-Wei. Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance. Acta Physica Sinica, 2016, 65(4): 048401. doi: 10.7498/aps.65.048401
    [7] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [8] Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui. Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials. Acta Physica Sinica, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [9] Zhu Ke-Bin, Nie Zai-Ping, Sun Xiang-Yang. Numerical modeling of the signal transmission by cables and electromagnetic coupling for logging while drilling. Acta Physica Sinica, 2013, 62(6): 060202. doi: 10.7498/aps.62.060202
    [10] Yu Xin-Jie, Wu Tian-Yi, Li Zhen. Wireless energy transfer system based on metglas/PFC magnetoelectric laminated composites. Acta Physica Sinica, 2013, 62(5): 058503. doi: 10.7498/aps.62.058503
    [11] Sun Zhong-Hua, Wang Hong-Yan, Wang Hui, Zhang Zhi-Dong, Zhang Zhong-Yue. Effects of size and electric field coupling on the surface plasmon properties of gold nanoring dimer structures. Acta Physica Sinica, 2012, 61(12): 125202. doi: 10.7498/aps.61.125202
    [12] Shen Yun, Fan Ding-Huan, Fu Ji-Wu, Yu Guo-Ping. Theoretical research on optical properties of gain-assisted plasmonic coupled resonator optical waveguides. Acta Physica Sinica, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [13] Wu Li-Jun, Han Yu, Gong Wei-Jiang, Tan Tian-Ya. Decoupled states and anti-resonance in the Aharonov-Bohm interferometer with embodied quantum-dot ring. Acta Physica Sinica, 2011, 60(10): 107303. doi: 10.7498/aps.60.107303
    [14] Lin Min, Zhang Mei-Li. Interaction of force and coupled system and stochastic energetic resonance. Acta Physica Sinica, 2011, 60(2): 020501. doi: 10.7498/aps.60.020501
    [15] Tian He, Zhang Yun-Dong, Wang Hao, Qiu Wei, Wang Nan, Yuan Ping. The numerical emulation of linear characteristics of optical pulse propagation in microring coupled-resonator optical waveguides. Acta Physica Sinica, 2008, 57(11): 7012-7016. doi: 10.7498/aps.57.7012
    [16] Chen Xiong-Wen, Shi Zhen-Gang, Chen Bao-Ju, Song Ke-Hui. Asymmetric Kondo resonance splitting transition in T-shaped coupled-quantum-dot devices. Acta Physica Sinica, 2008, 57(4): 2421-2426. doi: 10.7498/aps.57.2421
    [17] Wang Ke, Ling Jian, Xie Fei-Xiang, Ma Ping, Yang Tao, Wang Fu-Ren, Dai Yuan-Dong. Spontaneous magnetization of two superconducting coupled π rings. Acta Physica Sinica, 2003, 52(6): 1509-1514. doi: 10.7498/aps.52.1509
    [18] MIAO XI-JIA, LU GUANG, YE CHAO-HUI. DESCRIPTION OF RAMAN MAGNETIC RESONANCE SPECTROSCOPY IN WEAKLY COUPLED TWO-SPIN SYSTEM BY PRODUCT OPERATOR FORMALISM. Acta Physica Sinica, 1997, 46(4): 802-812. doi: 10.7498/aps.46.802
    [19] BI SI-YUN. FERROMAGNETIC RESONANCE OF CYLINDRICAL DOMAIN LATTICE. Acta Physica Sinica, 1988, 37(7): 1188-1191. doi: 10.7498/aps.37.1188
    [20] CHUI WAN-QIU, RUAN LI-JIAN. STUDY ON THE ELECTRICAL PROPERTIES AND MAGNETIC RESONANCE OF NONCRYSTALLINE MATERIALS IN THE Li2O-P2O5-V2O5 SYSTEM. Acta Physica Sinica, 1987, 36(3): 322-331. doi: 10.7498/aps.36.322
Metrics
  • Abstract views:  5584
  • PDF Downloads:  351
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2016
  • Accepted Date:  25 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回