Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Protein structure prediction

Deng Hai-You Jia Ya Zhang Yang

Citation:

Protein structure prediction

Deng Hai-You, Jia Ya, Zhang Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Predicting 3D structure of proteins from the amino acid sequences is one of the most important unsolved problems in computational biology and biophysics. This review article attempts to introduce the most recent effort and progress on this problem. After a brief introduction of the background and basic concepts involved in protein structure prediction, we went through the specific steps that have been taken by most typical structural modeling approaches, including fold recognition, model initialization, conformational search, model selection, and atomic-level structure refinement. Several representative structure prediction methods were introduced in detail, including those from both template-based modeling and ab initio folding approaches. Finally, we overview the results shown in the community-wide Critical Assessment of protein Structure Prediction (CASP) experiments that have been developed for benchmarking the state of the art of the field.
      Corresponding author: Zhang Yang, zhng@umich.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547255, 11474117), the Fundamental Research Funds for the Central Universities, China (Grant No. 2662015BQ045) and the National Institute of General Medical Sciences (GM083107, GM116960).
    [1]

    Kolata G 1986 Science 233 1037

    [2]

    Consortium U 2015 Nucleic Acids Res. 43 D204

    [3]

    Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E 2000 Nucleic Acids Res. 28 235

    [4]

    Anfinsen C B 1973 Science 181 223

    [5]

    Bowie J U, Luthy R, Eisenberg D 1991 Science 253 164

    [6]

    Jones D, Thornton J 1993 J. Comput. Aided Mol. Des. 7 439

    [7]

    Jones D T, Taylor W R, Thornton J M 1992 Nature 358 86

    [8]

    Jones D T 1999 J. Mol. Biol. 287 797

    [9]

    Chothia C 1992 Nature. 357 543

    [10]

    Zhang Y, Skolnick J 2005 Nucleic Acids Res. 33 2302

    [11]

    Huang Y J P, Mao B C, Aramini J M, Montelione G T 2014 Proteins 82 43

    [12]

    Tai C H, Bai H J, Taylor T J, Lee B 2014 Proteins 82 57

    [13]

    Moult J 2005 Curr. Opin. Struct. Biol. 15 285

    [14]

    Kryshtafovych A, Fidelis K, Moult J 2010 Introduction to Protein Structure Prediction: Methods and Algorithms (Hoboken: John Wiley Sons, Inc.) pp15-32

    [15]

    Needleman S B, Wunsch C D 1970 J. Mol. Biol. 48 443

    [16]

    Smith T F, Waterman M S 1981 J. Mol. Biol. 147 195

    [17]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [18]

    Rohl C A, Strauss C E, Misura K M, Baker D 2004 Methods Enzymol. 383 66

    [19]

    Xu D, Zhang Y 2012 Proteins 80 1715

    [20]

    Dill K A, MacCallum J L 2012 Science 338 1042

    [21]

    Pearlman D A, Case D A, Caldwell J W, Ross W S, Iii T E C, Debolt S, Ferguson D, Seibel G, Kollman P 1995 Comput. Phys. Commun. 91 1

    [22]

    Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M 1983 J. Comput. Chem. 4 187

    [23]

    Tanaka S, Scheraga H A 1976 Macromolecules. 9 945

    [24]

    Miyazawa S, Jernigan R L 1984 Macromolecules. 18 534

    [25]

    Sippl M J 1990 J. Mol. Biol. 213 859

    [26]

    Samudrala R, Moult J 1998 J. Mol. Biol. 275 895

    [27]

    Lu H, Skolnick J 2001 Proteins. 44 223

    [28]

    Zhou H, Zhou Y 2002 Protein Sci. 11 2714

    [29]

    Rykunov D, Fiser A 2010 BMC Bioinformatics 11 1

    [30]

    Deng H, Jia Y, Wei Y, Zhang Y 2012 Proteins 80 2311

    [31]

    Van Gunsteren W F, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke D P, Gltli A, Hnenberger P H 2006 Angew. Chem. Int. Edit 45 4064

    [32]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141

    [33]

    Hansmann U H E, Okamoto Y 1999 Curr. Opin. Struct. Biol. 9 177

    [34]

    Li Z, Scheraga H A 1987 Proc. Natl. Acad. Sci. 84 6611

    [35]

    Kirkpatrick S C, Gelatt C D, Vecchi M P 1983 Science. 220 671

    [36]

    Swendsen R H, Wang J S 1986 Phys. Rev. Lett. 57 2607

    [37]

    Kihara D, Lu H, Kolinski A, Skolnick J 2001 Proc. Natl. Acad. Sci. 98 10125

    [38]

    Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, Tramontano A 2014 Proteins. 82 112

    [39]

    Samudrala R, Levitt M 2000 Protein Sci. 9 1399

    [40]

    Tsai J, Bonneau R, Morozov A V, Kuhlman B, Rohl C A, Baker D 2003 Proteins. 53 76

    [41]

    Deng H, Jia Y, Zhang Y 2016 Bioinformatics. 32 378

    [42]

    Shortle D, Simons K T, Baker D 1998 Proc. Natl. Acad. Sci. 95 11158

    [43]

    Zhang Y, Skolnick J 2004 J. Comput. Chem. 25 865

    [44]

    Kozakov D, Clodfelter K H, Vajda S, Camacho C J 2005 Biophys. J. 89 867

    [45]

    Maupetit J, Gautier R, Tuffery P 2006 Nucleic Acids Res. 34 W147

    [46]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [47]

    Rotkiewicz P, Skolnick J 2008 J. Comput. Chem. 29 1460

    [48]

    Li Y Q, Zhang Y 2009 Proteins. 76 665

    [49]

    Dunbrack R L, Karplus M 1993 J. Mol. Biol. 230 543

    [50]

    Krivov G G, Shapovalov M V, Dunbrack R L 2009 Proteins. 77778

    [51]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

    [52]

    Xu J 2005 Research in computational molecular biology Cambridge May 14-18 423

    [53]

    Miao Z, Cao Y, Jiang T 2011 Bioinformatics. 27 3117

    [54]

    Wu S, Skolnick J, Zhang Y 2007 BMC Biol. 5 17

    [55]

    Xu D, Zhang Y 2011 Biophys. J. 101 2525

    [56]

    Zhang J, Liang Y, Zhang Y 2011 Structure. 19 1784

    [57]

    MacCallum J L, Prez A, Schnieders M J, Hua L, Jacobson M P, Dill K A 2011 Proteins 79 74

    [58]

    Nugent T, Cozzetto D, Jones D T 2014 Proteins. 82 98

    [59]

    Modi V, Xu Q, Sam A, Roland L, Dunbrack J 2016 Proteins. 0 00

    [60]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2014 Proteins. 82 1

    [61]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2016 Proteins 0

    [62]

    Guex N, Peitsch M C 1997 Electrophoresis. 18 2714

    [63]

    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L 2014 Nucleic Acids Res. 42 252

    [64]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [65]

    Remmert M, Biegert A, Hauser A, Sding J 2011 Nature Methods. 9 173

    [66]

    Benkert P, Knzli M, Schwede T 2009 Nucleic Acids Res. 37 W510

    [67]

    Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T 2013 Databsae Oxford. 2013 bat031

    [68]

    Sali A, Blundell T L 1993 J. Mol. Biol. 234 779

    [69]

    Fiser A, Do R K, Sali A 2000 Protein Sci. 9 1753

    [70]

    Shen M y, Sali A 2006 Protein Sci. 15 2507

    [71]

    Kuntal B K, Aparoy P, Reddanna P 2009 BMC Res. Notes. 3 1

    [72]

    Roy A, Kucukural A, Zhang Y 2010 Nat. Protoc. 5 725

    [73]

    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y 2014 Nature Methods. 12 127

    [74]

    Wu S, Zhang Y 2007 Nucleic Acids Res. 35 3375

    [75]

    Simons K T, Kooperberg C, Huang E, Baker D 1997 J. Mol. Biol. 268 209

    [76]

    Cheng J, Randall A Z, Sweredoski M J, Baldi P 2005 Nucleic Acids Res. 33 72

    [77]

    Lee J, Kim S Y, Joo K, Kim I, Lee J 2004 Proteins. 56 704

    [78]

    Jones, David T 2001 Proteins. Suppl 5 127

    [79]

    Kryshtafovych A, Monastyrskyy B, Fidelis K 2014 Proteins. 82 7

    [80]

    Monastyrskyy B, D'Andrea D, Fidelis K, Tramontano A, Kryshtafovych A 2014 Proteins. 82 138

    [81]

    Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K 2014 Proteins. 82 127

    [82]

    Zhang Y 2009 Curr. Opin. Struct. Biol. 19 145

  • [1]

    Kolata G 1986 Science 233 1037

    [2]

    Consortium U 2015 Nucleic Acids Res. 43 D204

    [3]

    Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E 2000 Nucleic Acids Res. 28 235

    [4]

    Anfinsen C B 1973 Science 181 223

    [5]

    Bowie J U, Luthy R, Eisenberg D 1991 Science 253 164

    [6]

    Jones D, Thornton J 1993 J. Comput. Aided Mol. Des. 7 439

    [7]

    Jones D T, Taylor W R, Thornton J M 1992 Nature 358 86

    [8]

    Jones D T 1999 J. Mol. Biol. 287 797

    [9]

    Chothia C 1992 Nature. 357 543

    [10]

    Zhang Y, Skolnick J 2005 Nucleic Acids Res. 33 2302

    [11]

    Huang Y J P, Mao B C, Aramini J M, Montelione G T 2014 Proteins 82 43

    [12]

    Tai C H, Bai H J, Taylor T J, Lee B 2014 Proteins 82 57

    [13]

    Moult J 2005 Curr. Opin. Struct. Biol. 15 285

    [14]

    Kryshtafovych A, Fidelis K, Moult J 2010 Introduction to Protein Structure Prediction: Methods and Algorithms (Hoboken: John Wiley Sons, Inc.) pp15-32

    [15]

    Needleman S B, Wunsch C D 1970 J. Mol. Biol. 48 443

    [16]

    Smith T F, Waterman M S 1981 J. Mol. Biol. 147 195

    [17]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [18]

    Rohl C A, Strauss C E, Misura K M, Baker D 2004 Methods Enzymol. 383 66

    [19]

    Xu D, Zhang Y 2012 Proteins 80 1715

    [20]

    Dill K A, MacCallum J L 2012 Science 338 1042

    [21]

    Pearlman D A, Case D A, Caldwell J W, Ross W S, Iii T E C, Debolt S, Ferguson D, Seibel G, Kollman P 1995 Comput. Phys. Commun. 91 1

    [22]

    Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M 1983 J. Comput. Chem. 4 187

    [23]

    Tanaka S, Scheraga H A 1976 Macromolecules. 9 945

    [24]

    Miyazawa S, Jernigan R L 1984 Macromolecules. 18 534

    [25]

    Sippl M J 1990 J. Mol. Biol. 213 859

    [26]

    Samudrala R, Moult J 1998 J. Mol. Biol. 275 895

    [27]

    Lu H, Skolnick J 2001 Proteins. 44 223

    [28]

    Zhou H, Zhou Y 2002 Protein Sci. 11 2714

    [29]

    Rykunov D, Fiser A 2010 BMC Bioinformatics 11 1

    [30]

    Deng H, Jia Y, Wei Y, Zhang Y 2012 Proteins 80 2311

    [31]

    Van Gunsteren W F, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke D P, Gltli A, Hnenberger P H 2006 Angew. Chem. Int. Edit 45 4064

    [32]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141

    [33]

    Hansmann U H E, Okamoto Y 1999 Curr. Opin. Struct. Biol. 9 177

    [34]

    Li Z, Scheraga H A 1987 Proc. Natl. Acad. Sci. 84 6611

    [35]

    Kirkpatrick S C, Gelatt C D, Vecchi M P 1983 Science. 220 671

    [36]

    Swendsen R H, Wang J S 1986 Phys. Rev. Lett. 57 2607

    [37]

    Kihara D, Lu H, Kolinski A, Skolnick J 2001 Proc. Natl. Acad. Sci. 98 10125

    [38]

    Kryshtafovych A, Barbato A, Fidelis K, Monastyrskyy B, Schwede T, Tramontano A 2014 Proteins. 82 112

    [39]

    Samudrala R, Levitt M 2000 Protein Sci. 9 1399

    [40]

    Tsai J, Bonneau R, Morozov A V, Kuhlman B, Rohl C A, Baker D 2003 Proteins. 53 76

    [41]

    Deng H, Jia Y, Zhang Y 2016 Bioinformatics. 32 378

    [42]

    Shortle D, Simons K T, Baker D 1998 Proc. Natl. Acad. Sci. 95 11158

    [43]

    Zhang Y, Skolnick J 2004 J. Comput. Chem. 25 865

    [44]

    Kozakov D, Clodfelter K H, Vajda S, Camacho C J 2005 Biophys. J. 89 867

    [45]

    Maupetit J, Gautier R, Tuffery P 2006 Nucleic Acids Res. 34 W147

    [46]

    Gront D, Kmiecik S, Kolinski A 2007 J. Comput. Chem. 28 1593

    [47]

    Rotkiewicz P, Skolnick J 2008 J. Comput. Chem. 29 1460

    [48]

    Li Y Q, Zhang Y 2009 Proteins. 76 665

    [49]

    Dunbrack R L, Karplus M 1993 J. Mol. Biol. 230 543

    [50]

    Krivov G G, Shapovalov M V, Dunbrack R L 2009 Proteins. 77778

    [51]

    Canutescu A A, Shelenkov A A, Dunbrack R L 2003 Protein Sci. 12 2001

    [52]

    Xu J 2005 Research in computational molecular biology Cambridge May 14-18 423

    [53]

    Miao Z, Cao Y, Jiang T 2011 Bioinformatics. 27 3117

    [54]

    Wu S, Skolnick J, Zhang Y 2007 BMC Biol. 5 17

    [55]

    Xu D, Zhang Y 2011 Biophys. J. 101 2525

    [56]

    Zhang J, Liang Y, Zhang Y 2011 Structure. 19 1784

    [57]

    MacCallum J L, Prez A, Schnieders M J, Hua L, Jacobson M P, Dill K A 2011 Proteins 79 74

    [58]

    Nugent T, Cozzetto D, Jones D T 2014 Proteins. 82 98

    [59]

    Modi V, Xu Q, Sam A, Roland L, Dunbrack J 2016 Proteins. 0 00

    [60]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2014 Proteins. 82 1

    [61]

    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A 2016 Proteins 0

    [62]

    Guex N, Peitsch M C 1997 Electrophoresis. 18 2714

    [63]

    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L 2014 Nucleic Acids Res. 42 252

    [64]

    Altschul S F, Madden T L, Schffer A A, Zhang J, Zhang Z, Miller W, Lipman D J 1997 Nucleic Acids Res. 25 3389

    [65]

    Remmert M, Biegert A, Hauser A, Sding J 2011 Nature Methods. 9 173

    [66]

    Benkert P, Knzli M, Schwede T 2009 Nucleic Acids Res. 37 W510

    [67]

    Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T 2013 Databsae Oxford. 2013 bat031

    [68]

    Sali A, Blundell T L 1993 J. Mol. Biol. 234 779

    [69]

    Fiser A, Do R K, Sali A 2000 Protein Sci. 9 1753

    [70]

    Shen M y, Sali A 2006 Protein Sci. 15 2507

    [71]

    Kuntal B K, Aparoy P, Reddanna P 2009 BMC Res. Notes. 3 1

    [72]

    Roy A, Kucukural A, Zhang Y 2010 Nat. Protoc. 5 725

    [73]

    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y 2014 Nature Methods. 12 127

    [74]

    Wu S, Zhang Y 2007 Nucleic Acids Res. 35 3375

    [75]

    Simons K T, Kooperberg C, Huang E, Baker D 1997 J. Mol. Biol. 268 209

    [76]

    Cheng J, Randall A Z, Sweredoski M J, Baldi P 2005 Nucleic Acids Res. 33 72

    [77]

    Lee J, Kim S Y, Joo K, Kim I, Lee J 2004 Proteins. 56 704

    [78]

    Jones, David T 2001 Proteins. Suppl 5 127

    [79]

    Kryshtafovych A, Monastyrskyy B, Fidelis K 2014 Proteins. 82 7

    [80]

    Monastyrskyy B, D'Andrea D, Fidelis K, Tramontano A, Kryshtafovych A 2014 Proteins. 82 138

    [81]

    Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K 2014 Proteins. 82 127

    [82]

    Zhang Y 2009 Curr. Opin. Struct. Biol. 19 145

  • [1] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [2] Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi. Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Physica Sinica, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [3] Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie. Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl. Acta Physica Sinica, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [4] Liu Dong, Cui Xin-Yue, Wang Hao-Dong, Zhang Gui-Jun. Recent advances in estimating protein structure model accuracy. Acta Physica Sinica, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [5] Luo Fang-Fang, Cai Zhi-Tao, Huang Yan-Dong. Progress in protein pKa prediction. Acta Physica Sinica, 2023, 72(24): 248704. doi: 10.7498/aps.72.20231356
    [6] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [7] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [8] Huang Xing-Yuan, Sui Ming-Yu, Hou Wen-Qing, Li Ming, Lu Ying, Xu Chun-Hua. Stepwise strand exchange during RecA-induced homologous recombination. Acta Physica Sinica, 2020, 69(20): 208706. doi: 10.7498/aps.69.20200959
    [9] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [10] Yang Li, Song Yu-Rong, Li Yin-Wei. Network structure optimization algorithm for information propagation considering edge clustering and diffusion characteristics. Acta Physica Sinica, 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [11] Yuan Fei, Zhang Chuan-Biao, Zhou Xin, Li Ming. An improved algorithm for prediction of protein loop structure based on position specificity of amino acids. Acta Physica Sinica, 2016, 65(15): 158701. doi: 10.7498/aps.65.158701
    [12] Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [13] Liu Lei, Zhang Suo-Liang, Ma Ya-Kun, Wu Guo-Hao, Zheng Shu-Kai, Wang Yong-Qing. Modelling and structure optimization of flat-panel thermal concentrated solar thermoelectric device. Acta Physica Sinica, 2013, 62(3): 038802. doi: 10.7498/aps.62.038802
    [14] Wan Xi, Zhou Jin, Liu Zeng-Rong. Emergence of features in protein-protein interaction networks. Acta Physica Sinica, 2012, 61(1): 010203. doi: 10.7498/aps.61.010203
    [15] Chen Xi, Lin Zheng-Zhe, Yin Cong, Tang Hao, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the growth and surface structure of platinum nanoparticles. Acta Physica Sinica, 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [16] He Wen-Ping, Wang Liu, Wan Shi-Quan, Liao Le-Jian, He Tao. Evolutionary modeling for dryness and wetness prediction. Acta Physica Sinica, 2012, 61(11): 119201. doi: 10.7498/aps.61.119201
    [17] Ding Wei, Jiang Fan. A new method of rigid-body refinementfor protein crystal structures. Acta Physica Sinica, 2011, 60(4): 046103. doi: 10.7498/aps.60.046103
    [18] Liu Ting-Yu, Zhang Qi-Ren, Zhuang Song-Lin. The colour centre model related to lead vacancy in PbWO4 crystal. Acta Physica Sinica, 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [19] YAN XUN-LING, DONG RUI-XIN, WANG BO-YUN, HU HAI-QUAN, XU BING-ZHEN. SELECTIVE RULES FOR THE RAMAN SPECTRUM OF α-HELICAL PROTEIN MOLECULES. Acta Physica Sinica, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
    [20] FAN HAI-FU. ENANTIOMORPHIC PHASE AMBIGUITIES AND THE MODIFIED COMPONENT RELATION——THE APPLICATION OF DIRECT METHODS TO PROTEIN STRUCTURES. Acta Physica Sinica, 1984, 33(3): 399-407. doi: 10.7498/aps.33.399
Metrics
  • Abstract views:  9073
  • PDF Downloads:  823
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2016
  • Accepted Date:  21 July 2016
  • Published Online:  05 September 2016

/

返回文章
返回