Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cylindric high power impulse magnetron sputtering source and its discharge characteristics

Xiao Shu Wu Zhong-Zhen Cui Sui-Han Liu Liang-Liang Zheng Bo-Cong Lin Hai Ricky K Y Fu Tian Xiu-Bo Pan Feng Paul K Chu

Citation:

Cylindric high power impulse magnetron sputtering source and its discharge characteristics

Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High power impulse magnetron sputtering (HiPIMS) is a popular physical vapor deposition (PVD) technology because of the high ionization of the sputtering materials, large coating density, good adhesion, and other favorable properties. However, this technique suffers some disadvantages such as the small deposition rate induced by the high target potential, the metallic droplets produced by the unstable discharge, and different ionizations for different sputtering materials, thereby hampering wider acceptance by the industry. A cylindric HiPIMS source in which the discharge is restricted in the cylinder is described in this paper. By using this source, coatings can be deposited with 100% ions without metallic droplets arising from the unstable discharge, and the unionized sputtered atoms cannot be extracted by the extraction grid with negative potential. Electron oscillation and repetitive sputtering of the unionized atoms occur in the cylinder to enhance collision and ionization. Due to the enlarged discharge area by the cylinder internal surface comparing with the area of the ion outlet (end face of the cylinder), the sputtering ions converge from the inwall to the center of the cylinder target and form an enhanced flow to spray out from the source, which will improve the deposition rate. The structure and discharge characteristics of the novel HiPIMS source are investigated by simulation and experiments. Our results indicate that 8 magnets can provide the reasonable magnetic field and the highest target utilization rate. The distributions of electrons and ions in the target each consist of 8 petals in the optimized magnetic structure, and the highest plasma density happens near the target, which is above 1.31017 m-3. The discharge characteristics confirm that the cylindric sputtering source can be operated under HiPIMS conditions and the evolution of the target currents with target voltage exhibits I-V characteristics typical of HiPIMS. An obvious pre-ionization is observed on the discharge glow and discharge current curves when the extra direct current (DC) is added. The racetrack area is about 60.0% of the target surface. The ion current curves are similar to those of the target currents, but a 40 s delay and about one-tenth current value are observed compared with the target currents. The sputtering is improved by the extra DC, inducing the increased metallic ions and the opposite evolution of gas ions. The results suggest that the cylindric sputtering source can be effectively used to conduct HiPIMS and is a novel way to improve and promote the application of HiPIMS.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 51301004, U1330110), the Science and Technology Research Foundation of Shenzhen, China (Grant Nos. JCYJ20140903102215536, JCYJ20150828093127698), and the Applied Research Foundation of the City University of Hong Kong, China (Grant No. 9667122).
    [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Shimizu T, Villamayor M, Lundin D, Helmersson U 2016 J. Phys. D: Appl. Phys. 49 065202

    [3]

    Yang Y, Zhou X, Liu J X, Anders A 2016 Appl. Phys. Lett. 108 034101

    [4]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [5]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [8]

    Wei S, Tian X B, Gong C Z 2013 Vacuum 50 6 (in Chinese) [魏松, 田修波, 巩春志 2013 真空 50 6]

    [9]

    Lin J, Moore J J, Sproul W D, Mishra B, Rees J A, Wu Z 2009 Surf. Coat. Technol. 203 3676

    [10]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275

    [11]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32

    [12]

    Olejnček J, Hubička Z, Kment 2013 Surf. Coat. Technol. 232 376

    [13]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140

    [14]

    Čapek J, Hla M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301

    [15]

    Aijaz A, Lundin D, Larsson P, Helmersson U 2010 Surf. Coat. Technol. 204 2165

    [16]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, October 8-12, 2011 p21

    [17]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [18]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [19]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695. 1 2014-06 (in Chinese) [吴忠振, 潘锋, 肖舒 2014 中国专利 201410268695. 1 2014-06]

    [20]

    Fu Q X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [付强新 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Duan W Z 2010 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [22]

    Guan K Z, Li Y Q 1986 Vacuum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [23]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 17 175201 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 17 175201]

    [24]

    Ehiasarian A P 2010 Pure Appl. Chem. 82 1247

    [25]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [26]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu R K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178

    [27]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 18 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 18 185207]

    [28]

    Li C W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [李春伟 2014 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [29]

    Luo Q, Yang S, Cooke K E 2013 Surf. Coat. Technol. 236 13

    [30]

    Paulitsch J, Schenkel M, Zufra T, Mayrhofer P H, Mnz W D 2010 Thin Solid Films 518 5558

  • [1]

    Kouznetsov V, Mack K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290

    [2]

    Shimizu T, Villamayor M, Lundin D, Helmersson U 2016 J. Phys. D: Appl. Phys. 49 065202

    [3]

    Yang Y, Zhou X, Liu J X, Anders A 2016 Appl. Phys. Lett. 108 034101

    [4]

    Anders A 2011 Surf. Coat. Technol. 205 S1

    [5]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Meta Sin. 10 1279 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 金属学报 10 1279]

    [6]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591

    [7]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661

    [8]

    Wei S, Tian X B, Gong C Z 2013 Vacuum 50 6 (in Chinese) [魏松, 田修波, 巩春志 2013 真空 50 6]

    [9]

    Lin J, Moore J J, Sproul W D, Mishra B, Rees J A, Wu Z 2009 Surf. Coat. Technol. 203 3676

    [10]

    Qin X, Ke P, Wang A, Kim K H 2013 Surf. Coat. Technol. 228 275

    [11]

    Holtzer N, Antonin O, Minea T, Marnieros S, Bouchier D 2014 Surf. Coat. Technol. 250 32

    [12]

    Olejnček J, Hubička Z, Kment 2013 Surf. Coat. Technol. 232 376

    [13]

    Oliveira J C, Fernandes F, Ferreira F, Cavaleiro A 2015 Surf. Coat. Technol. 264 140

    [14]

    Čapek J, Hla M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301

    [15]

    Aijaz A, Lundin D, Larsson P, Helmersson U 2010 Surf. Coat. Technol. 204 2165

    [16]

    Helmersson U 2011 Proceedings of 11th International Workshop on Plasma Based Ion Implantation Deposition Harbin, October 8-12, 2011 p21

    [17]

    Xu L, Wang S Q 2010 Vacuum 47 79 (in Chinese) [许丽, 王世庆 2010 真空 47 79]

    [18]

    Karpov D A 1997 Surf. Coat. Technol. 96 22

    [19]

    Wu Z Z, Pan F, Xiao S 2014 China Patent 201410268695. 1 2014-06 (in Chinese) [吴忠振, 潘锋, 肖舒 2014 中国专利 201410268695. 1 2014-06]

    [20]

    Fu Q X 2013 M. S. Thesis (Xi'an: Xidian University) (in Chinese) [付强新 2013 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Duan W Z 2010 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [段伟赞 2010 硕士学位论文(哈尔滨: 哈尔滨工业大学)]

    [22]

    Guan K Z, Li Y Q 1986 Vacuum 23 37 (in Chinese) [关奎之, 李云奇 1986 真空 23 37]

    [23]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 17 175201 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 17 175201]

    [24]

    Ehiasarian A P 2010 Pure Appl. Chem. 82 1247

    [25]

    Anders A 2008 Appl. Phys. Lett. 92 201501

    [26]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H, Ji S P, Tian X B, Fu R K Y, Chu P K, Pan F 2015 AIP Adv. 5 097178

    [27]

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 18 185207 (in Chinese) [吴忠振, 田修波, 潘锋, Ricky K Y Fu, 朱剑豪 2014 物理学报 18 185207]

    [28]

    Li C W 2014 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [李春伟 2014 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [29]

    Luo Q, Yang S, Cooke K E 2013 Surf. Coat. Technol. 236 13

    [30]

    Paulitsch J, Schenkel M, Zufra T, Mayrhofer P H, Mnz W D 2010 Thin Solid Films 518 5558

  • [1] Chen Long, Wang Di-Ya, Chen Jun-Yu, Duan Ping, Yang Ye-Hui, Tan Cong-Qi. Characteristics and suppression methods of low-frequency oscillation in Hall thruster. Acta Physica Sinica, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [2] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi. Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [3] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [4] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [5] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [6] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [7] Wang Tian-Long, Qiu Qing-Quan, Jing Li-Wei, Zhang Xiao-Bo. Design of circular composite sputtering cathode and simulation of its discharge characteristics. Acta Physica Sinica, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [8] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [9] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [10] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] Zhang Lian-Zhu, Meng Xiu-Lan, Zhang Su, Gao Shu-Xia, Zhao Guo-Ming. Simulation of N2 microhollow cathode discharge and cathode sputtering by using a PIC/MC model. Acta Physica Sinica, 2013, 62(7): 075201. doi: 10.7498/aps.62.075201
    [12] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [13] Mu Zong-Xin, Mu Xiao-Dong, Wang Chun, Jia Li, Dong Chuang. Analysis on the ionization of high power pulsed unbalanced magnetron sputtering powered by direct current. Acta Physica Sinica, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [14] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [15] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [16] Zhang Xin-Meng, Tian Xiu-Bo, Gong Chun-Zhi, Yang Shi-Qin. Discharge characteristics of confined cathode micro-arc oxidation. Acta Physica Sinica, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [17] Xia Jun-Feng, Zhang Ye-Wen, Zheng Fei-Hu, Lei Qing-Quan. Numerical simulation of charge packet behavior in low-density polyethylene based on Gunn effect-like model. Acta Physica Sinica, 2010, 59(1): 508-514. doi: 10.7498/aps.59.508
    [18] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [19] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [20] Mu Zong-Xin, Li Guo-Qing, Che De-Liang, Huang Kai-Yu, Liu Cui. Investigation of the model of the discharge properties of the unbalanced magnetron sputtering system. Acta Physica Sinica, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
Metrics
  • Abstract views:  6375
  • PDF Downloads:  190
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2016
  • Accepted Date:  21 June 2016
  • Published Online:  05 September 2016

/

返回文章
返回