Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile

Liu Huan Li Gong-Ping Xu Nan-Nan Lin Qiao-Lu Yang Lei Wang Cang-Long

Citation:

A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile

Liu Huan, Li Gong-Ping, Xu Nan-Nan, Lin Qiao-Lu, Yang Lei, Wang Cang-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • TiO2 is a versatile functional material in consumer products, such as fabrication of solar cells, light hydrolysis of hydrogen production and optical coating. Technologically, the absorption edge of TiO2 is in the ultraviolet (UV) region, which restrics its applications. Cu doping can solve the crucial problem and extend the absorption edge from the UV to the visible region. The first-principle calculation based on density functional theory with generalized gradient approximation and ultra-soft pseudo-potentials is carried out to investigate the defective rutile TiO2 through using the constructed 222 supercells in which all atoms are allowed to relax. The plane-wave cutoff energy is 340 eV by selecting 223 of k-point in Brillouin zone. O vacancy, Ti vacancy, Cu interstitial, Cu substitutional for Ti and compound defects are all considered. After the structural relaxation, the lattice host is slightly distorted with a little change of the lattice parameters, with out affecting the crystalline phase of rutile. The results show that the valence bands are mostly O 2p states while the conduction bands have mainly Ti 3d properties. The defect of Cu interstitial can bring about two new impurity levels in the energy gap because of Cu 3d states, and the defect of Cu substituted for Ti can also induce two new impurity levels while they are next to the valence band due to the interaction between Cu 3d and nonbonding orbits of O 2p. Ti vacancy can cause the Fermi level energy to lower and produce a new impurity level at the top of the valence band, which will narrow the energy gap. O vacancy can enhance the Fermi level energy and produce a new level at the bottom of the conduction bands, which shows the n-type semiconductor properties. The higher the concentration of Cu substituted for Ti, the larger the band gap is. It is due to the strong interaction between Ti 3d and Cu 3d, which makes the conduction band move to higher energy. Different compound defects have different influences. Cu interstitial and O or Ti vacancies induce new impurity levels within the band gap, which narrows the gap. Meanwhile, interstitial Cu and vacancies can also interact with each other. The hybridization between Cu 3d and nonbonding orbits of O 2p will induce new levels in the rutile with Ti vacancy structure, while nonbonding orbits of Cu 3d develop new levels by itself in the rutile with O vacancy and Cu interstitial. The Analysis the band structure of rutile with compound defects, shows that the rutile with O vacancy and Cu interstitial effectively affects influenced the absorption edge in visible light range. Cu interstitial, Cu substituted for Ti, O vacancy, Ti vacancy and compound defects can all narrow the band gap and produce a new absorption peak in the visible spectral range. It indicates that rutile with defects will improve the absorption in the visible range and achieve the goal of expanding the absorption range of single-crystal rutile.
      Corresponding author: Li Gong-Ping, ligp@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575074) and the Fundamental Research Fund for the Central Universities, China (Grant No. lzujbky-2015-240).
    [1]

    Thelakkat M, Schmitz C, Schmidt H W 2002 Adv. Mater. 14 577

    [2]

    Dou J F, Zou Z Y, Zheng Z G 2000 Mater. Rev. 14 35 (in Chinese)[豆俊峰, 邹振扬, 郑泽根2000材料导报14 35]

    [3]

    Fujishima A, Zhang X 2006 C. R. Chim. 9 750

    [4]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Yu H, Anpo M, Detlef W B 2014 Chem. Rev. 114 9919

    [5]

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116101 (in Chinese)[李天晶, 李公平, 马俊平, 高行新2011物理学报60 116101]

    [6]

    Li Y J, Chen W, Li Z P, Li L Y, Ma M Y, Ouyang Y Z 2010 Sci. Sin.:Chim. 2010 1814 (in Chinese)[李佑稷, 陈伟, 李志平, 李雷勇, 马明远, 欧阳玉祝2010中国科学:化学2010 1814]

    [7]

    Nakata K, Ochiai T, Murakami T, Fujishima A 2012 Electrochim. Acta 84 103

    [8]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2011 Acta Phys. Sin. 60 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲2011物理学报60 023101]

    [9]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101

    [10]

    Glassford K M, Chelikowsky J R 1992 Phys. Rev. B 46 1284

    [11]

    Sheng X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) (in Chinese)[沈学础1992半导体光谱和光学性质(第2版) (北京:科学出版社)]

    [12]

    Zhang J H, Feng Q, Zhu H Q, Yang Y 2015 Laser Optoelectronic Progress 2015 192 (in Chinese)[张菊花, 冯庆, 周晴, 杨英2015激光与光电子学进展2015 192]

    [13]

    Liu J, Liu T Y, Li H X, Liu F M 2015 Acta Phys. Sin. 64 193101 (in Chinese)[刘检, 刘廷禹, 李海心, 刘凤明2015物理学报64 193101]

    [14]

    Huang G Y, Abduljabbar N M, Wirth B D 2013 J. Phys. Condens. Matter 25 2775

    [15]

    Ma J P 2010 M. S. Thesis (Lanzhou:Lanzhou University) (in Chinese)[马俊平2010硕士学位论文(兰州:兰州大学)]

    [16]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese)[陈琦丽, 唐超群2006材料科学与工程学报24 514]

  • [1]

    Thelakkat M, Schmitz C, Schmidt H W 2002 Adv. Mater. 14 577

    [2]

    Dou J F, Zou Z Y, Zheng Z G 2000 Mater. Rev. 14 35 (in Chinese)[豆俊峰, 邹振扬, 郑泽根2000材料导报14 35]

    [3]

    Fujishima A, Zhang X 2006 C. R. Chim. 9 750

    [4]

    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Yu H, Anpo M, Detlef W B 2014 Chem. Rev. 114 9919

    [5]

    Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116101 (in Chinese)[李天晶, 李公平, 马俊平, 高行新2011物理学报60 116101]

    [6]

    Li Y J, Chen W, Li Z P, Li L Y, Ma M Y, Ouyang Y Z 2010 Sci. Sin.:Chim. 2010 1814 (in Chinese)[李佑稷, 陈伟, 李志平, 李雷勇, 马明远, 欧阳玉祝2010中国科学:化学2010 1814]

    [7]

    Nakata K, Ochiai T, Murakami T, Fujishima A 2012 Electrochim. Acta 84 103

    [8]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2011 Acta Phys. Sin. 60 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲2011物理学报60 023101]

    [9]

    Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101

    [10]

    Glassford K M, Chelikowsky J R 1992 Phys. Rev. B 46 1284

    [11]

    Sheng X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) (in Chinese)[沈学础1992半导体光谱和光学性质(第2版) (北京:科学出版社)]

    [12]

    Zhang J H, Feng Q, Zhu H Q, Yang Y 2015 Laser Optoelectronic Progress 2015 192 (in Chinese)[张菊花, 冯庆, 周晴, 杨英2015激光与光电子学进展2015 192]

    [13]

    Liu J, Liu T Y, Li H X, Liu F M 2015 Acta Phys. Sin. 64 193101 (in Chinese)[刘检, 刘廷禹, 李海心, 刘凤明2015物理学报64 193101]

    [14]

    Huang G Y, Abduljabbar N M, Wirth B D 2013 J. Phys. Condens. Matter 25 2775

    [15]

    Ma J P 2010 M. S. Thesis (Lanzhou:Lanzhou University) (in Chinese)[马俊平2010硕士学位论文(兰州:兰州大学)]

    [16]

    Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese)[陈琦丽, 唐超群2006材料科学与工程学报24 514]

  • [1] Liu Ru-Lin, Fang Liang, Hao Yue, Chi Ya-Qing. Density functional theory calculation of diffusion mechanism of intrinsic defects in rutile TiO2. Acta Physica Sinica, 2018, 67(17): 176101. doi: 10.7498/aps.67.20180818
    [2] Fan Da-Zhi, Liu Gui-Li, Wei Lin. Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene. Acta Physica Sinica, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [3] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [4] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [5] Zhu Hong-Qiang, Feng Qing. Microscopic characteristics mechanism of optical gas sensing material rutile titanium dioxide (110) surface adsorption of CO molecules. Acta Physica Sinica, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [6] Li Jian-Hua, Cui Yuan-Shun, Zeng Xiang-Hua, Chen Gui-Bin. Investigations of structural phase transition, electronic structures and optical properties in ZnS. Acta Physica Sinica, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [7] Gong Li, Feng Xiang-Yang, Lu Yao, Zhang Chang-Wen, Wang Pei-Ji. The investigation on effect of property of ZnO photoelectric material by Ta-doping. Acta Physica Sinica, 2012, 61(9): 097101. doi: 10.7498/aps.61.097101
    [8] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. Study of material properties of Fe, S Co-doped SnO2 by first principles. Acta Physica Sinica, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [9] Sun Wei-Feng, Zheng Xiao-Xia. First-principles study of interface relaxation effects on interface structure, band structure and optical property of InAs/GaSb superlattices. Acta Physica Sinica, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [10] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [11] Zhang Xiao-Chao, Zhao Li-Jun, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Electronic structures and optical properties of transition metals (Fe, Co, Ni, Zn) doped rutile TiO2. Acta Physica Sinica, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [12] Chen Dong, Xiao He-Yang, Jia Wei, Chen Hong, Zhou He-Gen, Li Yi, Ding Kai-Ning, Zhang Yong-Fan. Electronic structures and optical properties of AAl2C4 (A=Zn, Cd, Hg; C=S, Se) semiconductors. Acta Physica Sinica, 2012, 61(12): 127103. doi: 10.7498/aps.61.127103
    [13] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [14] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Jiang Lei, Zhang Guo-Lian, Song Peng. Material opto-electronic properties of In, N co-doped SnO2 studied by first principles. Acta Physica Sinica, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [16] Lu Yao, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Jiang Lei, Zhang Guo-Lian. First-principles calculation on electronic structure and optical properties of iron-doped SnO2. Acta Physica Sinica, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [17] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. Electronic structure and optical properties of Al-doped SnO2. Acta Physica Sinica, 2011, 60(2): 023101. doi: 10.7498/aps.60.023101
    [18] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [19] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [20] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
Metrics
  • Abstract views:  5074
  • PDF Downloads:  272
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2016
  • Accepted Date:  05 July 2016
  • Published Online:  05 October 2016

/

返回文章
返回