Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency

Lu He-Lin Du Chun-Guang

Citation:

Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency

Lu He-Lin, Du Chun-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cavity-optomechanics has emerged as a new interdisciplinary research field,which studies the interaction between light field and mechanical systems of micro-and nanoscale.It is a promising avenue to solid-state quantum optics and has potential applications in high sensitivity measurement of weak force,tiny displacement and mass,and quantum information science.As a solid-state system of quantum optics,it has many interesting coherent phenomena,such as optomechanically induced transparency (OMIT),which is the optomechanical analog of the well-known phenomenon of electromagnetically induced transparency (EIT).However,due to diversity in structure,OMIT systems must have many new phenomena which do not exist in ordinary EIT systems.On the other hand,whispering-gallery-mode (WGM) microresonators have been investigated extensively.WGM microresonators have a wide range of applications due to their high quality factors and microscale mode volumes.WGM microresonators can also be used for OMIT systems,which have been investigated extensively.In this paper,we study the coherent control of an double-cavity optomechanical system which is composed of two WGM microresonators.We assume that the two WGM microcavties are driven by two strong control fields and two weak probe fields,and,one of the two cavities can create a macroscopic mechanical breathing mode under the action of a radiation pressure force.We also assume that the two WGM microcavties are directly coupled by an evanescent field.We theoretically study the quantum coherent control of electromagnetically induced transparency in this system,and find that in contrast with ordinary EIT systems,there are many new properties in this OMIT system, for example if two control fields with appropriate amplitudes and detunings are used to drive the system,the probe field, which is input to one of the two cavities,will be completely output from the other cavity,i.e.,the perfect transparency of the quantum coherence phenomenon can occur in this system.We also find that the electromagnetically induced transparency can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between the two input probe fields,and the width and depth of the EIT window are sensitive to the relative intensity of the two control fields,which may be used for switching between fast and slow light.These results indicate important progress toward signal amplification,light storage,fast light,and slow light in quantum information processes.Considering the fact that WGM microresonators are the frontier research subjects ranging from biosensing, nonlinear optics,and laser physics,to fundamental physics such as cavity quantum electrodynamics,we believe that the results in this paper have a wide range of applications.
      Corresponding author: Du Chun-Guang, ducg@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11274197, 91221205).
    [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [2]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [3]

    Mahajan S, Kumar T, Bhattacherjee A B, ManMohan 2013 Phys. Rev. A 87 013621

    [4]

    Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Böuerle D, Aspelmeyer N M, Zeilinger A 2006 Nature 444 67

    [5]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [6]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [7]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925

    [8]

    Gorodetsky M L, Savchenkov A A 1996 Opt. Lett. 21 453

    [9]

    Grudinin I S, Ilchenko V S, Maleki L 2006 Phys. Rev. A 74 063806

    [10]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903

    [11]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [12]

    Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C, Aspelmeyer M 2009 Nat. Phys. 5 485

    [13]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weiges M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [15]

    Huang S, Agarwal G S 2009 Phys. Rev. A 80 033807

    [16]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803

    [17]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [18]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [19]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rbl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [20]

    Totsuka K, Tomita M 2006 J. Opt. Soc. Am. B 23 2194

    [21]

    Totsuka K, Tomita M 2007 Phys. Rev. E 75 016610

    [22]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [23]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126

    [24]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Chin. Phys. B 23 114201

    [25]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 11508

    [26]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin:Springer Press) pp127-138

  • [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [2]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [3]

    Mahajan S, Kumar T, Bhattacherjee A B, ManMohan 2013 Phys. Rev. A 87 013621

    [4]

    Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Böuerle D, Aspelmeyer N M, Zeilinger A 2006 Nature 444 67

    [5]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [6]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [7]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925

    [8]

    Gorodetsky M L, Savchenkov A A 1996 Opt. Lett. 21 453

    [9]

    Grudinin I S, Ilchenko V S, Maleki L 2006 Phys. Rev. A 74 063806

    [10]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903

    [11]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [12]

    Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C, Aspelmeyer M 2009 Nat. Phys. 5 485

    [13]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weiges M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [15]

    Huang S, Agarwal G S 2009 Phys. Rev. A 80 033807

    [16]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803

    [17]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [18]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [19]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rbl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [20]

    Totsuka K, Tomita M 2006 J. Opt. Soc. Am. B 23 2194

    [21]

    Totsuka K, Tomita M 2007 Phys. Rev. E 75 016610

    [22]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [23]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126

    [24]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Chin. Phys. B 23 114201

    [25]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 11508

    [26]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin:Springer Press) pp127-138

  • [1] Wang Yin, Zhou Si-Jie, Chen Qiao, Deng Yong-He. Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium. Acta Physica Sinica, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [2] Zhang Yue-Bin, Ma Cheng-Ju, Zhang Yao, Jin Jia-Sheng, Bao Shi-Qian, Li Mi, Li Dong-Ming. Research on analogue of electromagnetically induced transparency effect based on asymmetric structure all-dielectric metamaterial. Acta Physica Sinica, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [3] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] Yang Liu,  Gao Zhong-Xing,  Xue Bing,  Zhang Yong-Gang,  Cai Yong-Mao. Improvement on reflectivity of tunable photonic band gap with spontaneous generated coherence. Acta Physica Sinica, 2018, 67(23): 234204. doi: 10.7498/aps.67.20181374
    [6] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2Noise transfer characteristics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [8] Yang Guang, Wang Jie, Wang Jun-Min. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Physica Sinica, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [9] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] Du Ying-Jie, Xie Xiao-Tao, Yang Zhan-Ying, Bai Jin-Tao. Dark soliton in the system of electromagnetically induced transparency. Acta Physica Sinica, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [11] Qiu Kang-Sheng, Zhao Yan-Hui, Liu Xiang-Bo, Feng Bao-Hua, Xu Xiu-Lai. Whispering gallery modes in a bent ZnO microwire. Acta Physica Sinica, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [12] Bian Cheng-Ling, Zhu Jiang, Lu Jia-Wen, Yan Jia-Lu, Chen Li-Qing, Wang Zeng-Bin, Ou Ze-Yu, Zhang Wei-Ping. Experimental research on retrieval efficiency of atomic spin wave based on electromagnetically induced transparency. Acta Physica Sinica, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [13] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [14] Li Qin, Guo Hong. The propagation properties of broadband pulse. Acta Physica Sinica, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [15] Lü Chun-Hai, Tan Wen-Ting, Tan Lei. Electromagnetically induced transparency in squeezed vacuum. Acta Physica Sinica, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] Li Xiao-Li, Zhang Lian-Shui, Yang Bao-Zhu, Yang Li-Jun. Electromagnetically induced absorption and transparency in a closed lambda-shaped four-level system. Acta Physica Sinica, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [17] Qiu Shan-Liang, Li Yong-Ping. Self-consistent field description of whispering-gallery mode in circular cavity. Acta Physica Sinica, 2009, 58(12): 8309-8315. doi: 10.7498/aps.58.8309
    [18] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] Yang Li-Jun, Zhang Lian-Shui, Li Xiao-Li, Li Xiao-Wei, Guo Qing-Lin, Han Li, Fu Guang-Sheng. Multi-window frequency-tunable electromagnetically induced transparency. Acta Physica Sinica, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] Wang Li, Song Hai-Zhen. Electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
Metrics
  • Abstract views:  5429
  • PDF Downloads:  258
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2016
  • Accepted Date:  14 June 2016
  • Published Online:  05 November 2016

/

返回文章
返回