Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of surface waves on the granular sheet of dense granular jet impingement

Qian Wen-Wei Li Wei-Feng Shi Zhe-Hang Liu Hai-Feng Wang Fu-Chen

Citation:

Characteristics of surface waves on the granular sheet of dense granular jet impingement

Qian Wen-Wei, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Dense granular jet impingement widely exists in numerous natural flow phenomena and industrial processes. It is significant to investigate the influencing factors of the flow patterns of dense granular jet impingement and reveal the evolution rules of flow patterns. The dynamic behaviors of dense granular jets impinging on a flat target are experimentally studied by a high-speed camera and image processing software of NIH. The effects of the particle diameter(Dpar), the granular jet velocity(U0) and the solid content of the granular jet(X) on the flow patterns and surface waves of granular sheet are investigated. Two patterns, i.e., the liquid-like granular film and the scattering pattern are identified from the dense granular jet impingement. The results show that with the increase of the particle diameter, the solid content of the granular jet reduces, and the interparticle collision frequency decreases, which results in the granular sheet evolving into the scattering pattern. The opening angle of the granular sheet() is bigger than that of the liquid sheet, and the granular jet velocity plays an insignificant role in the opening angle. The interesting behaviors of liquid-like surface waves are identified in the granular sheet. The frequency of surface wave of the granular sheet(f) is an order of magnitude smaller than that of the liquid sheet. The surface wave length() increases and frequency decreases with the increase of radial position, as the surface waves merge during the granular sheet spreading radially. The surface wave spreading velocity normalized by the granular jet velocity is a constant of about 0.4. With the increase of the granular jet velocity, the pulsation of granular jet occurs due to the pressure fluctuation in the discharge process under the effect of gas-solid interaction. The frequencies of surface waves of both the granular sheet and the granular jet pulsation become the same generally. It is indicated that the surface wave is primarily caused by the granular jet pulsation. The results in this paper present the knowledge of the dense granular jet impingement and provide some principles for the steady operation of dense granular jet impingement in industrial process.
      Corresponding author: Li Wei-Feng, liweif@ecust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 91434130) and the Fundamental Research Funds for the Central Universities, China(Grant No. WB1516016).
    [1]

    Bremond N, Villermaux E 2006 J. Fluid Mech. 549 273

    [2]

    Clanet C 2000 Phys. Rev. Lett. 85 5106

    [3]

    Clanet C 2001 J. Fluid Mech. 430 111

    [4]

    Clanet C 2007 Annu. Rev. Fluid Mech. 39 469

    [5]

    Villermaux E, Clanet C 2002 J. Fluid Mech. 462341

    [6]

    Wu Z R, Liu M, Liu Q S, Song Z X, Wang S S 2013 Acta Phys. Sin. 64244701(in Chinese)[吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思2013物理学报64 244701]

    [7]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702(in Chinese)[刘梅, 王松岭, 吴正人2014物理学报63 154702]

    [8]

    Wang S L, Liu M, Wang S S, Wu Z R 2015 Acta Phys. Sin. 64 014701(in Chinese)[王松岭, 刘梅, 王思思, 吴正人2015物理学报64 014701]

    [9]

    Huang G F, Li W F, Tu G Y, Wang F C 2014 CIESC J. 65 3789(in Chinese)[黄国峰, 李伟锋, 屠功毅, 王辅臣2014化工学报65 3789]

    [10]

    Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M 2009 Nature 459 1110

    [11]

    Yan J, Yang X Q, Deng M, Guo H P, Ye J L 2010 Chin. Phys. B 19 128202

    [12]

    Lu H, Liu H F, Li W F, Xu J L 2013 AIChE J. 59 1882

    [13]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [14]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [15]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [16]

    Ellowitz J, Turlier H, Guttenberg N, Zhang W W, Nagel S R 2013 Phys. Rev. Lett. 111 168001

    [17]

    Guttenberg N 2012 Phys. Rev. E 85 051303

    [18]

    Sano T G, Hayakawa H 2012 Phys. Rev. E 86 041308

    [19]

    Sano T G, Hayakawa H 2013 Prog. Theor. Exp. Phys. 2013 103J02

    [20]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay, H 2007 J. Fluid Mech. 572 413

    [21]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay H 2011 AIChE J. 57 1434

    [22]

    Varieras D, Brancher P, Giovannini A 2007 Flow, Turb. Comb. 78 1

  • [1]

    Bremond N, Villermaux E 2006 J. Fluid Mech. 549 273

    [2]

    Clanet C 2000 Phys. Rev. Lett. 85 5106

    [3]

    Clanet C 2001 J. Fluid Mech. 430 111

    [4]

    Clanet C 2007 Annu. Rev. Fluid Mech. 39 469

    [5]

    Villermaux E, Clanet C 2002 J. Fluid Mech. 462341

    [6]

    Wu Z R, Liu M, Liu Q S, Song Z X, Wang S S 2013 Acta Phys. Sin. 64244701(in Chinese)[吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思2013物理学报64 244701]

    [7]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702(in Chinese)[刘梅, 王松岭, 吴正人2014物理学报63 154702]

    [8]

    Wang S L, Liu M, Wang S S, Wu Z R 2015 Acta Phys. Sin. 64 014701(in Chinese)[王松岭, 刘梅, 王思思, 吴正人2015物理学报64 014701]

    [9]

    Huang G F, Li W F, Tu G Y, Wang F C 2014 CIESC J. 65 3789(in Chinese)[黄国峰, 李伟锋, 屠功毅, 王辅臣2014化工学报65 3789]

    [10]

    Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M 2009 Nature 459 1110

    [11]

    Yan J, Yang X Q, Deng M, Guo H P, Ye J L 2010 Chin. Phys. B 19 128202

    [12]

    Lu H, Liu H F, Li W F, Xu J L 2013 AIChE J. 59 1882

    [13]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [14]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [15]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [16]

    Ellowitz J, Turlier H, Guttenberg N, Zhang W W, Nagel S R 2013 Phys. Rev. Lett. 111 168001

    [17]

    Guttenberg N 2012 Phys. Rev. E 85 051303

    [18]

    Sano T G, Hayakawa H 2012 Phys. Rev. E 86 041308

    [19]

    Sano T G, Hayakawa H 2013 Prog. Theor. Exp. Phys. 2013 103J02

    [20]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay, H 2007 J. Fluid Mech. 572 413

    [21]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay H 2011 AIChE J. 57 1434

    [22]

    Varieras D, Brancher P, Giovannini A 2007 Flow, Turb. Comb. 78 1

  • [1] Sun Qi-Xia, Zhuang Jian-Hong, Liu Bai-Cheng, Shen Zhen-Xing. Triboelectrification in moving particle flow. Acta Physica Sinica, 2022, 71(8): 084501. doi: 10.7498/aps.71.20211647
    [2] Wang Yue, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen. Characteristics of granular sheet of dense granular jet oblique impact. Acta Physica Sinica, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [3] Wu Zheng-Ren, Liu Mei, Liu Qiu-Sheng, Song Zhao-Xia, Wang Si-Si. Influence of the inclined waving wall on the surface wave evolution of liquid film. Acta Physica Sinica, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [4] Wang Song-Ling, Liu Mei, Wang Si-Si, Wu Zheng-Ren. Influence of uneven wall changing over time on the characteristics of liquid surface wave evolution. Acta Physica Sinica, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [5] Ding Yue, Shen Jie, Pang Yuan, Liu Guang-Tong, Fan Jie, Ji Zhong-Qing, Yang Chang-Li, Lü Li. Proximity-effect-induced superconductivity by granular Pb film on the surface of Bi2Te3 topological insulator. Acta Physica Sinica, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [6] Wang Zhi-Ming. Spin injection in GaAs and giant Hall effect. Acta Physica Sinica, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [7] Rong Liang-Wan, Zhan Jie-Min. Investigation on the microscopic structure of bubble in dense particle system. Acta Physica Sinica, 2010, 59(8): 5572-5580. doi: 10.7498/aps.59.5572
    [8] Liu Yan-Hua, Gan Fu-Jun, Zhang Kai. Nucleation and coagulation of nanoparticles in a planar jet. Acta Physica Sinica, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [9] Bao De-Song, Lei Zhe-Min, Hu Guo-Qi, Zhang Xun-Sheng, Tang Xiao-Wei. The effect of opening-angle at choke point on the two-dimensional granular flow on a conveyor belt. Acta Physica Sinica, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [10] Huang De-Cai, Sun Gang, Hou Mei-Ying, Lu Kun-Quan. The effect of the granule velocity on the dilute-dense flow transition in granular system. Acta Physica Sinica, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [11] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [12] Wu Qiang, Zheng Rui-Lun. The spin excitation delay for granular film swith ferromagnetic granules. Acta Physica Sinica, 2005, 54(7): 3397-3401. doi: 10.7498/aps.54.3397
    [13] Zhou Ying, Bao De-Song, Zhang Xun-Sheng, Lei Zhe-Min, Hu Guo-Qi, Tang Xiao-Wei. Effect of boundary on the two-dimensional inclined channel for a dilute granular flow distribution. Acta Physica Sinica, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [14] Deng Lian-Wen, Jiang Jian-Jun, Feng Ze-Kun, Zhang Xiu-Cheng, He Hua-Hui. Microwave electromagnetic characteristics of FeCoBSiO2 nano-granular magnetic films. Acta Physica Sinica, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [15] Zheng Wu, Wang Ai-Ling, Jiang Hong-Wei, Zhou Yun-Song, Li Tong. Magnetic properties of Co-Pt-C grain films. Acta Physica Sinica, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [16] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [17] WANG SONG-YOU, JU XIAO-HUA, LI HE-YIN, XU XU-DONG, ZHOU PENG, ZHANG RONG-JUN, YANG YUE-MEI, ZHOU SHI-MING, CHEN LIANG-YAO. THE SIZE EFFECT ON OPTICAL AND MAGNETO-OPTICAL PROPERTIES IN Fe-Ag GRANULAR FILMS. Acta Physica Sinica, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [18] YANG XIN-E, YANG JI-SHENG, DONG JIAN-TAO, CHE MING-RI. GIANT MAGNETORESISTANCE OF Fe-Ag GRANULAR FILMS. Acta Physica Sinica, 1997, 46(9): 1834-1840. doi: 10.7498/aps.46.1834
    [19] WANG WEN-NAI, ZANG WEN-CHENG, GU GANG, DU YOU-WEI, HONG JIAN-MING. THE MAGNETIC SURFACE EFFECT OF NICKEL ULTRAFINE PARTICLES. Acta Physica Sinica, 1992, 41(9): 1537-1541. doi: 10.7498/aps.41.1537
    [20] WANG WEI, YU ZHENG, SUN YUAN-SHAN, YAO XI-XIAN. THE SUPERCONDUCTIVITY OF 2-DIMENSIONAL GRANULAR FILMS. Acta Physica Sinica, 1986, 35(8): 1081-1086. doi: 10.7498/aps.35.1081
Metrics
  • Abstract views:  4752
  • PDF Downloads:  236
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2016
  • Accepted Date:  28 June 2016
  • Published Online:  05 November 2016

/

返回文章
返回