Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermophysical properties and liquid-solid transition mechanisms of ternary (Co0.5Cu0.5)100-xSnx alloys

Liu Jin-Ming Zhai Wei Zhou Kai Geng De-Lu Wei Bing-Bo

Citation:

Thermophysical properties and liquid-solid transition mechanisms of ternary (Co0.5Cu0.5)100-xSnx alloys

Liu Jin-Ming, Zhai Wei, Zhou Kai, Geng De-Lu, Wei Bing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The thermophysical properties and liquid-solid phase transition characteristics of ternary (Co0.5Cu0.5)100-xSnx(x=10, 20, 30, 40 and 50 at%) alloys are systematically investigated. The liquidus temperature and latent heat of fusion, as well as the undercooling are determined by differential scanning calorimetry (DSC) method. Based on the measured data, their relationships with Sn content are fitted by polynomial functions. The liquidus temperature shows a decreasing tendency with the increase of Sn content. The undercooling of liquid (Co0.5Cu0.5)100-xSnx alloys significantly increases with increasing Sn amount, indicating that the addition of Sn element enhances the undercoolability. By using the laser-flash and DSC methods, the thermal diffusion coefficients and specific heats of solid ternary (Co0.5Cu0.5)100-xSnx alloys are respectively measured in a temperature range from 293 to 473 K. The thermal diffusion coefficients increase linearly as temperature rises. The thermal diffusion coefficient varies from 1.0610-5 to 1.1210-5 m2s-1 for ternary Co45Cu45Sn10 alloy, which is close to that of Co element but much lower than those of Cu and Sn elements in the same temperature range. However, the thermal diffusion coefficients of other (Co0.5Cu0.5)100-xSnx alloys are far less than that of ternary Co45Cu45Sn10 alloy. The specific heat shows an increasing trend with temperature, and drops apparently with increasing Sn amount. From the measured thermal diffusion coefficients, specific heats and densities, the thermal conductivities of ternary (Co0.5Cu0.5)100-xSnx alloys at 293 K are derived. With the Sn content increasing up to 40 at%, the thermal conductivities for (Co0.5Cu0.5)100-xSnx alloys monotonically decrease from 33.83 to 7.90 Wm-1K-1, and subsequently increases slightly when the Sn content further increases up to 50 at%. In addition, on the basis of the DSC curves and solidification microstructures, the liquid-solid phase transitions are also explored. When the Sn content is less than 30 at%, the primary (Co) phase appears as coarse dendrites, whose volume fraction decreases as Sn content increases. Once Sn content exceeds 30 at%, the Co3Sn2 phase preferentially nucleates and grows during solidification, which occupies about 89% volume in the solidified Co30Cu30Sn40 alloy. The phase constitution investigation indicates that with the increase of the Sn content, the (Cu) solid solution phase disappears, whereas intermetallic compounds, including Cu41Sn11, Cu3Sn, and Cu6Sn5 phases successively precipitate from the alloy melts. The (Sn) solid solution phase even appears when Sn amount reaches 50 at%.
      Corresponding author: Zhai Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51271150, 51571164, 51506182), Young scientist program of Shaanxi Province and NPU Excellent Personnel Supporting Project of AoXiang New Star.
    [1]

    Gente C, Oehring M, Bormann R 1993Phys. Rev. B 48 13244

    [2]

    Miranda M G M, Estévez-Rams E, Martínez G, Baibich M N 2003Phys. Rev. B 68 014434

    [3]

    Fan X, Mashimo T, Huang X, Kagayama T, Chiba A, Koyama K, Motokawa M 2004Phys. Rev. B 69 094432

    [4]

    Yang W, Chen S H, Yu H, Li S, Liu F, Yang G C 2012Appl. Phys. A 109 665

    [5]

    Yan N, Wang W L, Dai F P, Wei B B 2011Acta Phys. Sin. 60 034602(in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波2011物理学报60 034602]

    [6]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012J. Mater. Sci. 47 7955

    [7]

    Zhai W, Hu L, Zhou K, Wei B B 2016J. Phys. D:Appl. Phys. 49 165306

    [8]

    Curiotto S, Battezzati L, Johnson E, Pryds N 2007Acta Mater. 55 6642

    [9]

    Zang D Y, Wang H P, Dai F P, Langevin D, Wei B B 2011Appl. Phys. A 102141

    [10]

    Du L, Wang L, Zheng B, Du H 2016J. Alloy. Compd. 663 243

    [11]

    Adhikari D, Jha I S, Singh B P 2010Physica B 405 1861

    [12]

    Chen S W, Chang J S, Pan K, Hsu C M, Hsu C W 2013Metall. Mater. Trans. A 44 1656

    [13]

    Andersson C, Sun P, Liu J 2008J. Alloy. Compd. 457 97

    [14]

    Chuang T H, Jain C C, Wu H M 2008J. Electron. Mater. 37 1734

    [15]

    Alvarado J L, Marsh C, Sohn C, Phetteplace G, Newell T 2007Int. J. Heat Mass Tran. 50 1938

    [16]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961J. Appl. Phys. 32 1679

    [17]

    Hofmeister A M 1999Science 283 1699

    [18]

    Bocchini G F, Bovesecchi G, Coppa P, Corasaniti S, Montanari R, Varone A 2016Int. J. Thermophys. 37 1

    [19]

    Beck P, Goncharov A F, Struzhkin V V, Militzer B, Mao H, Hemley R J 2007Appl. Phys. Lett. 91 181914

    [20]

    Huang F, Chen R, Ding H, Su Y 2016Int. J. Heat Mass Tran. 100 428

    [21]

    Poteryaev A I, Skornyakov S L, Belozerov A S, Anisimov V I 2015Phys. Rev. B 91 195141

    [22]

    Gaber A, Afify N 2002Physica B 315 1

    [23]

    Zhou S Q, Ni R 2008Appl. Phys. Lett. 92 093123

    [24]

    Yu X, Hofmeister A M 2011J. Appl. Phys. 109 033516

    [25]

    Xuan Y, Huang Y, Li Q 2009Chem. Phys. Lett. 479 264

    [26]

    Leitner J, Voňka P, Sedmidubský D, Svoboda P 2010Thermochim. Acta 497 7

    [27]

    Gale W F, Totememier T C 2004Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Publishers Ltd) pp1-8

    [28]

    Kubišta J, Vřešt'ál J 2000J. Phase Equilib. 21 125

    [29]

    Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K 2004Calphad 28 213

    [30]

    Gierlotka W, Chen S W, Lin S K 2007J. Mater. Res. 22 3158

  • [1]

    Gente C, Oehring M, Bormann R 1993Phys. Rev. B 48 13244

    [2]

    Miranda M G M, Estévez-Rams E, Martínez G, Baibich M N 2003Phys. Rev. B 68 014434

    [3]

    Fan X, Mashimo T, Huang X, Kagayama T, Chiba A, Koyama K, Motokawa M 2004Phys. Rev. B 69 094432

    [4]

    Yang W, Chen S H, Yu H, Li S, Liu F, Yang G C 2012Appl. Phys. A 109 665

    [5]

    Yan N, Wang W L, Dai F P, Wei B B 2011Acta Phys. Sin. 60 034602(in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波2011物理学报60 034602]

    [6]

    Munitz A, Venkert A, Landau P, Kaufman M J, Abbaschian R 2012J. Mater. Sci. 47 7955

    [7]

    Zhai W, Hu L, Zhou K, Wei B B 2016J. Phys. D:Appl. Phys. 49 165306

    [8]

    Curiotto S, Battezzati L, Johnson E, Pryds N 2007Acta Mater. 55 6642

    [9]

    Zang D Y, Wang H P, Dai F P, Langevin D, Wei B B 2011Appl. Phys. A 102141

    [10]

    Du L, Wang L, Zheng B, Du H 2016J. Alloy. Compd. 663 243

    [11]

    Adhikari D, Jha I S, Singh B P 2010Physica B 405 1861

    [12]

    Chen S W, Chang J S, Pan K, Hsu C M, Hsu C W 2013Metall. Mater. Trans. A 44 1656

    [13]

    Andersson C, Sun P, Liu J 2008J. Alloy. Compd. 457 97

    [14]

    Chuang T H, Jain C C, Wu H M 2008J. Electron. Mater. 37 1734

    [15]

    Alvarado J L, Marsh C, Sohn C, Phetteplace G, Newell T 2007Int. J. Heat Mass Tran. 50 1938

    [16]

    Parker W J, Jenkins R J, Butler C P, Abbott G L 1961J. Appl. Phys. 32 1679

    [17]

    Hofmeister A M 1999Science 283 1699

    [18]

    Bocchini G F, Bovesecchi G, Coppa P, Corasaniti S, Montanari R, Varone A 2016Int. J. Thermophys. 37 1

    [19]

    Beck P, Goncharov A F, Struzhkin V V, Militzer B, Mao H, Hemley R J 2007Appl. Phys. Lett. 91 181914

    [20]

    Huang F, Chen R, Ding H, Su Y 2016Int. J. Heat Mass Tran. 100 428

    [21]

    Poteryaev A I, Skornyakov S L, Belozerov A S, Anisimov V I 2015Phys. Rev. B 91 195141

    [22]

    Gaber A, Afify N 2002Physica B 315 1

    [23]

    Zhou S Q, Ni R 2008Appl. Phys. Lett. 92 093123

    [24]

    Yu X, Hofmeister A M 2011J. Appl. Phys. 109 033516

    [25]

    Xuan Y, Huang Y, Li Q 2009Chem. Phys. Lett. 479 264

    [26]

    Leitner J, Voňka P, Sedmidubský D, Svoboda P 2010Thermochim. Acta 497 7

    [27]

    Gale W F, Totememier T C 2004Smithells Metals Reference Book (8th Ed.) (Amsterdam:Elsevier Publishers Ltd) pp1-8

    [28]

    Kubišta J, Vřešt'ál J 2000J. Phase Equilib. 21 125

    [29]

    Jiang M, Sato J, Ohnuma I, Kainuma R, Ishida K 2004Calphad 28 213

    [30]

    Gierlotka W, Chen S W, Lin S K 2007J. Mater. Res. 22 3158

  • [1] Jin Ying-Jie, Geng De-Lu, Lin Mao-Jie, Hu Liang, Wei Bing-Bo. Thermophysical properties and rapid solidification mechanism of liquid Zr60Ni25Al15 alloy under electrostatic levitation condition. Acta Physica Sinica, 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [2] Li Xiao-Li, Sun Jian-Gang, Tao Ning, Zeng Zhi, Zhao Yue-Jin, Shen Jing-Ling, Zhang Cun-Lin. Application of nonlinear data fitting method to thermal diffusivity of carbon-carbon composite measured by transmission pulsed thermography. Acta Physica Sinica, 2017, 66(18): 188702. doi: 10.7498/aps.66.188702
    [3] Zhang Zhen-Xia, Wang Chen-Yu, Li Qiang, Wu Shu-Gui. Relationship between the quasi-linear diffusion coefficients and the key parameters of spatial energetic electrons. Acta Physica Sinica, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [4] Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu. Thermophysical properties and rapid solidification of Al-Cu-Ge alloys. Acta Physica Sinica, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [5] Shao Zong-Qian, Chen Jin-Wang, Li Yu-Qi, Pan Xiao-Yin. Thermodynamical properties of a three-dimensional free electron gas confined in a one-dimensional harmonical potential. Acta Physica Sinica, 2014, 63(24): 240502. doi: 10.7498/aps.63.240502
    [6] Rao Zhong-Hao, Wang Shuang-Feng, Zhang Yan-Lai, Peng Fei-Fei, Cai Song-Heng. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Physica Sinica, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [7] Song Bo, Wang Xiao-Po, Wu Jiang-Tao, Liu Zhi-Gang. Prediction of thermophysical properties of pure noble gases. Acta Physica Sinica, 2011, 60(3): 033401. doi: 10.7498/aps.60.033401
    [8] Wu Zhi-Hua, Xie Hua-Qing. The effect of electric pulses on the specific heat of polycrystalline La0.7Ca0.3MnO3. Acta Physica Sinica, 2010, 59(4): 2703-2707. doi: 10.7498/aps.59.2703
    [9] Wu Yan-Zhao, Xie Ning, Liu Jian-Jing, Jiao Yong-Fang. Phonon spectra and specific heat calculation of single wall carbon nanotube. Acta Physica Sinica, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [10] Chen Le, Wang Hai-Peng, Wei Bing-Bo. Measurement and calculation of specific heat for a liquid Ni-Cu-Fe ternary alloy. Acta Physica Sinica, 2009, 58(1): 384-389. doi: 10.7498/aps.58.384
    [11] Yao Wen-Jing, Wang Nan. Monte Carlo simulation of thermophysical properties of Ni-15%Mo alloy melt. Acta Physica Sinica, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [12] Liang Wei, Xiao Yang, Ding Jian-Wen. Lattice dynamics of graphene ribbon. Acta Physica Sinica, 2008, 57(6): 3714-3719. doi: 10.7498/aps.57.3714
    [13] Li Zheng, Luo Jian-Lin. Superconducting proprties of noncentrosymmetric Mg10±δIr19B16?δ. Acta Physica Sinica, 2008, 57(7): 4508-4511. doi: 10.7498/aps.57.4508
    [14] Zhang Chao, Sun Jiu-Xun, Tian Rong-Gang, Zou Shi-Yong. Analytic equations of state and thermo-physical properties for the α, β, and γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [15] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [16] Cheng Jin-Guang, Sui Yu, Qian Zheng-Nan, Liu Zhi-Guo, Huang Xi-Qiang, Miao Ji-Peng, Lü Zhe, Wang Xian-Jie, Su Wen-Hui. Specific heat of single-crystal NdMnO3. Acta Physica Sinica, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [17] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [18] HU XIAO-HUA, CHEN ZHAO-JIA, LUO JIAN-LIN, WANG YU-PENG, BAI HAI-YANG, JIN DUO. EFFECT OF SUBSTITUTION OF Ni BY Cu ON SPECIFIC HEAT OF CeNiSn. Acta Physica Sinica, 2000, 49(10): 2109-2112. doi: 10.7498/aps.49.2109
    [19] ZHAO JIAN-HUA, LIU RI-PING, ZHOU ZHEN-HUA, ZHANG XIANG-YI, ZHANG MING, XU YING-FAN, WANG WEN-KUI. A NEW WAY FOR MEASURING INTERDIFFUSION COEFFICIENT OF LIQUID METAL——SOLID/LIQUID-LIQUID/SOLID TRILAYER SYSTEM. Acta Physica Sinica, 1999, 48(3): 416-420. doi: 10.7498/aps.48.416
    [20] ZHU ZAI-WAN, XU JI-AN. METALLIC HYDROGEN——TRANSITION PRESSURES AND PHYSICAL PROPERTIES. Acta Physica Sinica, 1979, 28(6): 865-871. doi: 10.7498/aps.28.865
Metrics
  • Abstract views:  4316
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2016
  • Accepted Date:  14 August 2016
  • Published Online:  05 November 2016

/

返回文章
返回