Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influences of material defects and temperature on current-driven domain wall mobility

Zhu Jin-Rong Fan Lü-Chao Chao Su Hu Jing-Guo

Citation:

Influences of material defects and temperature on current-driven domain wall mobility

Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Current-induced domain wall motion, which has potential application in the next-generation data storage and logic device, has attracted much interest in recent years. However, how the material defect and its joule heat influence current-driven domain wall motion in magnetic nanostripe is still unclear. This paper is to deal with these issues by using the Landau-Lifshitz-Gilbert spin dynamics. The results show that the material defect can pin domain wall motion and this pinning effect strongly depends on the defect concentration, location and shape. The pinning effect induced by the defect on domain wall motion results in the increase of threshold current, and the domain wall moves steadily and continuously. Specifically, the probability for domain wall motion induced by pinning effect is nonlinearly increasing with the increase of defect concentration. Namely, the increasing of the pinning ability with the increase of the defect concentration becomes fades away. Initially, when the defect is near to domain wall, the pinning ability is obvious. However, the pinning ability is not linearly increasing with the decrease of the initial distance between the defect and the domain wall. The results also show that the single defect is larger, the probability for domain wall motion induced by defect pining is bigger. Moreover, the material defect can suppress the domain wall trending toward breakdown and make domain wall move faster, but the suppressing ability is not obviously increasing with the increase of the defect concentration. On the other hand, the temperature field can remove the pinning phenomenon, which will result in the threshold current decrease. The decrease of the threshold current is of benefit to the working of the data storage and logic device. Also the temperature field can suppress the domain wall trending toward breakdown, but the suppressing ability is less than that of the defect. In addition, the Joule heat around defects can obviously eliminate the pinning effect of the defects, so the pinning effect for a few defects on current-induced domain wall motion can be ignored. Further analysis indicates that these effects are due to the change of the out-of-plane magnetization of the domain wall induced by the material defects and the temperature field, because the velocity of the domain wall motion induced by the applied current greatly depends on the out-of-plane magnetization of the domain wall.
      Corresponding author: Chao Su, ycsu@yzu.edu.cn;jghu@yzu.edu.cn ; Hu Jing-Guo, ycsu@yzu.edu.cn;jghu@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374253) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB140018).
    [1]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [2]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 2008

    [3]

    Ito M, Ooba A, Komine T, Sugita R 2013 J. Magn. Magn. Mater. 340 61

    [4]

    Komine T, Takahashi K, Ooba A, Sugita R 2011 J. Appl. Phys. 109 07D503

    [5]

    Roy P E, Wunderlich J 2011 Appl. Phys. Lett. 99 122504

    [6]

    Heyne L, Rhensius J, Bisig A, Krzyk S, Punke P 2010 Appl. Phys. Lett. 96 032504

    [7]

    Heinen J, Boulle O, Rousseau K, Malinowski G, Klöui M 2010 Appl. Phys. Lett. 96 202510

    [8]

    Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V 2012 Phys. Rev. Lett. 108 076604

    [9]

    Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F, Hehn M 2012 Phys. Rev. Lett. 109 106601

    [10]

    Su Y, Sun J, Hu J, Lei H 2013 Europhys. Lett. 103 67004

    [11]

    Curiale J, Lemaitre A, Niazi T, Faini G, Jeudy V 2012 J. Appl. Phys. 112 103922

    [12]

    Glathe S, Mattheis R, Berkov D V 2008 Appl. Phys. Lett. 93 072508

    [13]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [14]

    Yan M, Kákay A, Gliga S, Hertel R 2010 Phys. Rev. Lett. 104 057201

    [15]

    Lee J Y, Lee K S, Kim S K 2007 Appl. Phys. Lett. 91 122513

    [16]

    Kruger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [17]

    Ueda K, Koyama T, Chiba D, Shimamura K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y 2011 Appl. Phys. Express 4 063003

    [18]

    Akerman J, Muöoz M, Maicas M, Prieto J L 2010 Phys. Rev. B 82 064426

    [19]

    Yuan H Y, Wang X R 2014 Phys. Rev. B 89 054423

    [20]

    Huang S H, Laia C H 2009 Appl. Phys. Lett. 95 032505

    [21]

    Leliaert J, Wiele B V, Vansteenkiste A 2014 Phys. Rev. B 89 064419

    [22]

    Martinez E 2012 J. Appl. Phys. 111 07D302

    [23]

    Zhu J, Han Z, Su Y, Hu J 2014 J. Magn. Magn. Mater. 369 96

    [24]

    Martinez E, Lopez-Diaz L, Alejos O, Torres L 2009 J. Appl. Phys. 106 043914

    [25]

    Garcia-Sanchez F, Szambolics H, Mihai A, Vila L, Marty A, Attané J, Toussaint J, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [26]

    He J, Li Z, Zhang S 2006 Phys. Rev. B 73 184408

    [27]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 90

    [28]

    Burn D M, Atkinson D 2013 Appl. Phys. Lett. 102 242414

    [29]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [30]

    Bryan M T, Schrefl T, Atkinson D, Allwood D A 2008 J. Appl. Phys. 103 073906

  • [1]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [2]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 2008

    [3]

    Ito M, Ooba A, Komine T, Sugita R 2013 J. Magn. Magn. Mater. 340 61

    [4]

    Komine T, Takahashi K, Ooba A, Sugita R 2011 J. Appl. Phys. 109 07D503

    [5]

    Roy P E, Wunderlich J 2011 Appl. Phys. Lett. 99 122504

    [6]

    Heyne L, Rhensius J, Bisig A, Krzyk S, Punke P 2010 Appl. Phys. Lett. 96 032504

    [7]

    Heinen J, Boulle O, Rousseau K, Malinowski G, Klöui M 2010 Appl. Phys. Lett. 96 202510

    [8]

    Curiale J, Lemaitre A, Ulysse C, Faini G, Jeudy V 2012 Phys. Rev. Lett. 108 076604

    [9]

    Torrejon J, Malinowski G, Pelloux M, Weil R, Thiaville A, Curiale J, Lacour D, Montaigne F, Hehn M 2012 Phys. Rev. Lett. 109 106601

    [10]

    Su Y, Sun J, Hu J, Lei H 2013 Europhys. Lett. 103 67004

    [11]

    Curiale J, Lemaitre A, Niazi T, Faini G, Jeudy V 2012 J. Appl. Phys. 112 103922

    [12]

    Glathe S, Mattheis R, Berkov D V 2008 Appl. Phys. Lett. 93 072508

    [13]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [14]

    Yan M, Kákay A, Gliga S, Hertel R 2010 Phys. Rev. Lett. 104 057201

    [15]

    Lee J Y, Lee K S, Kim S K 2007 Appl. Phys. Lett. 91 122513

    [16]

    Kruger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [17]

    Ueda K, Koyama T, Chiba D, Shimamura K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y 2011 Appl. Phys. Express 4 063003

    [18]

    Akerman J, Muöoz M, Maicas M, Prieto J L 2010 Phys. Rev. B 82 064426

    [19]

    Yuan H Y, Wang X R 2014 Phys. Rev. B 89 054423

    [20]

    Huang S H, Laia C H 2009 Appl. Phys. Lett. 95 032505

    [21]

    Leliaert J, Wiele B V, Vansteenkiste A 2014 Phys. Rev. B 89 064419

    [22]

    Martinez E 2012 J. Appl. Phys. 111 07D302

    [23]

    Zhu J, Han Z, Su Y, Hu J 2014 J. Magn. Magn. Mater. 369 96

    [24]

    Martinez E, Lopez-Diaz L, Alejos O, Torres L 2009 J. Appl. Phys. 106 043914

    [25]

    Garcia-Sanchez F, Szambolics H, Mihai A, Vila L, Marty A, Attané J, Toussaint J, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [26]

    He J, Li Z, Zhang S 2006 Phys. Rev. B 73 184408

    [27]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 90

    [28]

    Burn D M, Atkinson D 2013 Appl. Phys. Lett. 102 242414

    [29]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [30]

    Bryan M T, Schrefl T, Atkinson D, Allwood D A 2008 J. Appl. Phys. 103 073906

  • [1] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] Li Zhu-Bai, Wei Lei, Zhang Zhen, Duan Dong-Wei, Zhao Qian. Macroeffect of magnons and thermal fluctiation on magnetization reversal. Acta Physica Sinica, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [3] Zhang Shuo, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Effect of defects on magnetostriction and magnetic moment evolution of iron thin films. Acta Physica Sinica, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [4] He An, Xue Cun. Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit. Acta Physica Sinica, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [5] Molecular dynamics study on the effect of defects on magnetostriction of iron thin films. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211177
    [6] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [7] Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen. Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets. Acta Physica Sinica, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [8] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [9] Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua. Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes. Acta Physica Sinica, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [10] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [12] Bao Jun-Lin, Lin Li-Yan, He Liang, Du Lei. Noise as a characteriscic for current transmitting rateof optoelectronic coupled devicesfor ionization radiation damage. Acta Physica Sinica, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [13] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [16] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] Zhang Kai-Wang, Zhong Jian-Xin. Influence of defects on the melting and premelting of carbon nanotubes. Acta Physica Sinica, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [18] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] Jiang Ben-Xue, Xu Jun, Li Hong-Jun, Wang Jing-Ya, Zhao Guang-Jun, Zhao Zhi-Wei. Core center distribution of Nd∶YAG crystal grown by Temperature gradient technique. Acta Physica Sinica, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [20] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
Metrics
  • Abstract views:  5275
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2016
  • Accepted Date:  26 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回