Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography

Ma Zhen-He Dou Shi-Dan Ma Yu-Shu Liu Jian Zhao Yu-Qian Liu Jiang-Hong Lü Jiang-Tao Wang Yi

Citation:

Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography

Ma Zhen-He, Dou Shi-Dan, Ma Yu-Shu, Liu Jian, Zhao Yu-Qian, Liu Jiang-Hong, Lü Jiang-Tao, Wang Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • During cardiac development, the growth, remodeling and morphogenesis of embryonic hearts are closely linked to hemodynamic forces. An understanding of the interaction mechanism between hemodynamic forces and heart development is important for the early diagnosis and treatment of various congenital defects. The myocardial wall strain (MWS) in embryonic heart is a critical parameter for quantifying the mechanical properties of cardiac tissues. Here, we focus on the radial strain which is defined as the change of the myocardial wall thickness. An effective measurement of MWS is conductive to studies of embryonic heart development. Chick embryo is a popular animal model used for studing the cardiac development due to the similarity of cardiac development between the human heart and the chick heart at early developmental stages and its easy access. Although various imaging methods have been proposed, there still remain significant challenges to imaging of early stage chick embryo heart because it is small in size and beats fast. Optical coherence tomography (OCT) is a non-contact three-dimensional imaging modality with high spatial and temporal resolution which has been widely used for imaging the biological tissue. In this paper, we describe a method to measure in vivo MWS of chicken embryonic hearts with a high speed spectral domain OCT(SDOCT) system worked at 1310 nm. We perform four-dimensional (4D) (x, y, z, t) scanning on the outflow tract (OFT) of chick embryonic hearts in a non-gated way. The transient states of the OFT are extracted from the 4D data by using the beating synchronization algorithm. The OFT center line can be achieved by image processing. Assuming that the blood flow is parallel to the center line in the blood vessel, we calculate the Doppler angle of blood flow from the OFT center line. In a certain OFT cross-section, the OFT myocardial wall (inner and external borders) is segmented from the OCT images with a semi-automatic boundary-detection algorithm. Then, the myocardial wall thickness is calculated from the Doppler angle, area and sum of inner and external radii of the segmented myocardial wall. The radial strain is obtained by calculating the myocardial wall thickness variation. Previous methods calculated the myocardial wall thickness by directly subtracting inner and external radii. The measured result may be deteriorated by insufficient resolution of the system since the myocardial wall of OFT is very thin. The present method can solve this problem by calculating the thickness through using the sum of the radii instead of the subtraction. The experimental results on embryonic chick hearts demonstrate that the proposed method can measure the MWS of OFT along arbitrary orientation and it is a useful tool for studying the biomechanical characteristics of embryonic hearts.
      Corresponding author: Ma Zhen-He, mazhenhe@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 31170956, 61275214, 81301208), the Fundamental Research Fund for the Central Universities, China (Grant No. N120223001), and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2015501002, H2015501133).
    [1]

    Tan G X Y, Jamil M, Tee N G Z, Liang Z, Yap C H 2015 Ann. Biomed. Eng. 43 2780

    [2]

    Vos S D 2005 Ph. D. Dissertation (Rotterdam:Erasmus University)

    [3]

    Hove J R, K঎ster R W, Forouhar A S, Acevedobolton G, Fraser S E, Gharib M 2003 Nature 421 172

    [4]

    Rugonyi S, Shaut C, Liu A, Thornburg K, Wang R K 2008 Phys. Med. Biol. 53 5077

    [5]

    Nerurkar R N L, Achtien K H, Filas B A, Voronov D A, Taber L A 2008 J. Biomech. Eng. 130 637

    [6]

    Liu A P, Wang R K, Thornburg K L, Rugonyi S 2009 Eng. Comput. 25 73

    [7]

    Lacktis J W, Manasek F J 1978 Birth. Defects. Orig. Artic. Ser. 14 205

    [8]

    Taber L A, Sun H, Clark E B, Keller B B 1994 Circ. Res. 75 896

    [9]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese)[彭京思, 彭虎2012物理学报61 248701]

    [10]

    Phoon C, Aristizabal O, Turnbull D H 2000 Ultrasound Med. Biol. 26 1275

    [11]

    Jones E A V, Baron M H, Fraser S E, Dickinson M E 2004 Ajp Heart & Circulatory Physiol. 287 H1561

    [12]

    Jenkins M W, Rothenberg F, Roy D, Nikolski V P, Hu Z, Watanabe M, Wilson D L, Efimov I R, Rollins A M 2006 Opt. Express 14 736

    [13]

    Yelbuz T M, Zhang X, Choma M A, Stadt H A, Zdanowicz M, Johnson G A, Kirby M L 2003 Circulation 108 154

    [14]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 G. Ital. Cardiol. 8 28

    [15]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese)[杨亚良, 丁志华, 王凯, 吴凌, 吴兰2009物理学报58 1773]

    [16]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese)[唐弢, 赵晨, 陈志彦, 李鹏, 丁志华2015物理学报64 174201]

    [17]

    Michael W J, Lindsy P, Shi G, Madhusudhana G, David L W, Michiko W, Andrew M R 2010 J. Biomed. Opt. 15 41

    [18]

    Li P, Yin X, Shi L, Liu A, Rugonyi S, Wang R K 2011 IEEE Trans. Biomed. Eng. 58 2333

    [19]

    Li P, Liu A P, Shi L, Yin X, Rugonyi S, Wang R K 2011 Phys. Med. Biol. 56 7081

    [20]

    Ma Z H, Dou S D, Zhao Y Q, Guo C, Liu J, Wang Q Y, Xu T, Wang R K, Wang Y 2015 Appl. Opt. 54 9253

    [21]

    Liu A P, Nickerson A, Troyer A, Xin Y, Cary R, Thornburg K, Wang R K, Rugonyi S 2011 Comput. Struct. 89 855

    [22]

    Choi W, Baumann B, Liu J J, Clermont A C, Feener E P, Duker J S, Fujimoto J G 2012 Opt. Express 3 1047

    [23]

    Ma Z H, Liu A P, Yin X, Troyer A, Thornburg K, Wang R K, Rugonyi S 2010 Biomed. Opt. Express 1 798

    [24]

    Bistoquet A, Oshinski J, Škrinjar O 2008 Med. Image. Anal. 12 69

    [25]

    Zhu D N 2008 Physiology (7th Ed.) (Beijing:People's Medical Publishing House) p77(in Chinese)[朱大年2008生理学(第七版) (北京:人民卫生出版社)第77页]

  • [1]

    Tan G X Y, Jamil M, Tee N G Z, Liang Z, Yap C H 2015 Ann. Biomed. Eng. 43 2780

    [2]

    Vos S D 2005 Ph. D. Dissertation (Rotterdam:Erasmus University)

    [3]

    Hove J R, K঎ster R W, Forouhar A S, Acevedobolton G, Fraser S E, Gharib M 2003 Nature 421 172

    [4]

    Rugonyi S, Shaut C, Liu A, Thornburg K, Wang R K 2008 Phys. Med. Biol. 53 5077

    [5]

    Nerurkar R N L, Achtien K H, Filas B A, Voronov D A, Taber L A 2008 J. Biomech. Eng. 130 637

    [6]

    Liu A P, Wang R K, Thornburg K L, Rugonyi S 2009 Eng. Comput. 25 73

    [7]

    Lacktis J W, Manasek F J 1978 Birth. Defects. Orig. Artic. Ser. 14 205

    [8]

    Taber L A, Sun H, Clark E B, Keller B B 1994 Circ. Res. 75 896

    [9]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese)[彭京思, 彭虎2012物理学报61 248701]

    [10]

    Phoon C, Aristizabal O, Turnbull D H 2000 Ultrasound Med. Biol. 26 1275

    [11]

    Jones E A V, Baron M H, Fraser S E, Dickinson M E 2004 Ajp Heart & Circulatory Physiol. 287 H1561

    [12]

    Jenkins M W, Rothenberg F, Roy D, Nikolski V P, Hu Z, Watanabe M, Wilson D L, Efimov I R, Rollins A M 2006 Opt. Express 14 736

    [13]

    Yelbuz T M, Zhang X, Choma M A, Stadt H A, Zdanowicz M, Johnson G A, Kirby M L 2003 Circulation 108 154

    [14]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 G. Ital. Cardiol. 8 28

    [15]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese)[杨亚良, 丁志华, 王凯, 吴凌, 吴兰2009物理学报58 1773]

    [16]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese)[唐弢, 赵晨, 陈志彦, 李鹏, 丁志华2015物理学报64 174201]

    [17]

    Michael W J, Lindsy P, Shi G, Madhusudhana G, David L W, Michiko W, Andrew M R 2010 J. Biomed. Opt. 15 41

    [18]

    Li P, Yin X, Shi L, Liu A, Rugonyi S, Wang R K 2011 IEEE Trans. Biomed. Eng. 58 2333

    [19]

    Li P, Liu A P, Shi L, Yin X, Rugonyi S, Wang R K 2011 Phys. Med. Biol. 56 7081

    [20]

    Ma Z H, Dou S D, Zhao Y Q, Guo C, Liu J, Wang Q Y, Xu T, Wang R K, Wang Y 2015 Appl. Opt. 54 9253

    [21]

    Liu A P, Nickerson A, Troyer A, Xin Y, Cary R, Thornburg K, Wang R K, Rugonyi S 2011 Comput. Struct. 89 855

    [22]

    Choi W, Baumann B, Liu J J, Clermont A C, Feener E P, Duker J S, Fujimoto J G 2012 Opt. Express 3 1047

    [23]

    Ma Z H, Liu A P, Yin X, Troyer A, Thornburg K, Wang R K, Rugonyi S 2010 Biomed. Opt. Express 1 798

    [24]

    Bistoquet A, Oshinski J, Škrinjar O 2008 Med. Image. Anal. 12 69

    [25]

    Zhu D N 2008 Physiology (7th Ed.) (Beijing:People's Medical Publishing House) p77(in Chinese)[朱大年2008生理学(第七版) (北京:人民卫生出版社)第77页]

  • [1] Qian Huang-He, Wang Di, Han Tao, Ding Zhi-Hua. A method of fast locating discrete interface based on phase information of complex master-slave optical coherence tomography. Acta Physica Sinica, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [2] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [3] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [4] Hu Zhe-Hao, Shangguan Zi-Wei, Qiu Jian-Rong, Yang Shan-Shan, Bao Wen, Shen Yi, Li Peng, Ding Zhi-Hua. Stimulated-emission based spectral domain optical coherence tomography for molecular contrast imaging. Acta Physica Sinica, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [5] Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system. Acta Physica Sinica, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [6] Wang Yi, Guo Zhe, Zhu Li-Da, Zhou Hong-Xian, Ma Zhen-He. Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography. Acta Physica Sinica, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [7] Shangguan Zi-Wei, Shen Yi, Li Peng, Ding Zhi-Hua. Wavenumber calibration and phase measurement in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [8] Pan Cong, Guo Li, Shen Yi, Yan Xue-Guo, Ding Zhi-Hua, Li Peng. Phase correction method based on interfacial signal in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [9] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [10] Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection. Acta Physica Sinica, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [11] Liu Guo-Zhong, Zhou Zhe-Hai, Qiu Jun, Wang Xiao-Fei, Liu Gui-Li, Wang Rui-Kang. Application of amplitude and phase registration in blood flow imaging using optical coherence tomography. Acta Physica Sinica, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [12] Bao Wen, Ding Zhi-Hua, Wang Chuan, Mei Sheng-Tao. Phase sensitive spectral domain optical coherence tomography for latent fingerprint detection. Acta Physica Sinica, 2013, 62(11): 114202. doi: 10.7498/aps.62.114202
    [13] Xiao Di, Xie Yi-Jun. A joint compression and encryption scheme for color JPEG image. Acta Physica Sinica, 2013, 62(24): 240508. doi: 10.7498/aps.62.240508
    [14] Wu Tao, Jin Yi-Fu, Hou Rui, Yang Jun-Jie. Cognitive physics-based method for image edge representation and extraction with uncertainty. Acta Physica Sinica, 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [15] Ma Cheng-Ju, Ren Li-Yong, Tang Feng, Qu En-Shi, Xu Jin-Tao, Liang Quan, Wang Jian, Han Xu. Study on static pressure of fiber cable spool based on distributed fiber Bragg grating sensing technology. Acta Physica Sinica, 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [16] Wang Kai, Zeng Yan, Ding Zhi-Hua, Meng Jie, Shi Guo-Hua, Zhang Yu-Dong. Imaging quality enhancement by deconvolution in spectral domain optical coherence tomography. Acta Physica Sinica, 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [17] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [18] Liang Yan-Mei, Zhou Da-Chuan, Meng Fan-Yong, Wang Ming-Wei. A new broadband fiber light source for optical coherence tomography. Acta Physica Sinica, 2007, 56(6): 3246-3250. doi: 10.7498/aps.56.3246
    [19] Jia Ya-Qing, Liang Yan-Mei, Zhu Xiao-Nong. Simulation of optical coherence tomography using Monte Carlo method. Acta Physica Sinica, 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [20] Zong Xiao-Ping, Xu Yan, Dong Jiang-Tao. Fuzzy edge detection technique using multi-information fusion algorithm. Acta Physica Sinica, 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
Metrics
  • Abstract views:  4712
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2016
  • Accepted Date:  25 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回