Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Markov decision model based handoff selection algorithm for heterogeneous wireless networks

Liang Xiao Qian Zhi-Hong Tian Hong-Liang Wang Xue

Citation:

Markov decision model based handoff selection algorithm for heterogeneous wireless networks

Liang Xiao, Qian Zhi-Hong, Tian Hong-Liang, Wang Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Coexistence of multiple wireless access technologies will be an indicator of next-generation wireless network, and the integration of heterogeneous wireless networks will meet the needs of high-performance services for mobile users. According to unique quality of service (QoS) requirements of different service type users in heterogeneous environment, the Markov decision model based handoff selection algorithm is proposed in this paper. A heterogeneous wireless network architecture based on the software defined network (SDN) is established to realize the transparency control of heterogeneous networks. Network state information of heterogeneous wireless networks is mastered by SDN controller. It is responsible for scheduling network resources dynamically according to the performance characteristics of each network. If the network state information in equal interval is sampled, the next moment state of network is only related to the current network state and action, but it is not related to the historical state. The problem of handoff selection for heterogeneous wireless networks is modeled as a Markov process with discrete time and continuous state. To predict the next moment state of network by Markov process to obtain a reward, when the reward is positive, it represents the income; when it is negative, it represents the cost. An immediate reward function is constructed for real-time service and non real-time service users respectively according to their different state attributes of the network. Considering five state attributes of wireless network as follows:delay, delay jitter, bandwidth, error rate and network load, the immediate reward function is constructed with weighted summation. Due to the difference in attribute weight distribution among different service type users, the attribute weights are determined by the analytic hierarchy process. In the long term, the objective function which consists of immediate reward function sequence is used to measure future long-term rewards. Then expected reward function based on the state action pair is constructed to obtain the handoff strategy of the maximum expected return by the iterative method of successive approximation. The proposed Markov decision model based handoff selection algorithm is used in simulation of the Matlab platform. The simulation results show that the proposed method can select the optimal handoff strategy for different service type users and reduce the blocking rate, thereby improving the QoS of users and resource utilization of wireless networks.
      Corresponding author: Qian Zhi-Hong, dr.qzh@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61371092), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61401175), the Key Science and Technology Program of Jilin Province, China (Grant No. 20140204019GX), and the Key Science and Technology Program of Changchun City, China (Grant No. 2014026/14KG021).
    [1]

    Falowo O E, Chan H A 2012 Eurasip J. Wirel. Comm. 221

    [2]

    Zhu K, Niyato D, Wang P 2010 Proceedings of IEEE Wireless Communications and Networking Conference Sydney, Australia, April 18-21, 2010 p1

    [3]

    Yan X, Šekerciğlu lu Y A, Narayanan S 2010 Comput. Networking 54 1848

    [4]

    Liu J, Xiong Q Y, Shi X, Wang K, Shi W R 2015 Chin. Phys. B 24 076401

    [5]

    Ahmed A, Boulahia L M, Gaiti D 2014 IEEE Commun. Surv. Tutorials 16 776

    [6]

    Hasib A, Fapojuwo A 2008 IEEE Trans. Veh. Technol. 57 2426

    [7]

    Kunarak S, Sulessathira R, Dutkiewicz E 2013 Proceedings of IEEE International Conference of Region 10 Xi'an, China, October 22-25, 2013 p1

    [8]

    Salem M, Ismail M, Misran N 2011 J. Appl. Sci. 11 336

    [9]

    Niyato D, Hossain E 2009 IEEE Trans. Veh. Technol. 58 2008

    [10]

    Naghavi P, Rastegar S H, Shah-Mansouri V, Kebriaei H 2016 IEEE Wirel. Commun. Lett. 5 52

    [11]

    Stevens-Navarro E, Martinez-Morales J D, Pineda-Rico U 2012 J. Appl. Res. Technol. 10 534

    [12]

    Wang N, Shi W X, Fan S S, Liu S X 2011 Proceedings of 2nd International Conference on Challenges in Environmental Science and Computer Engineering Haikou, China, December 14-15, 2011 p55

    [13]

    Liu K M 2014 J. Inf. Comput. Secor. 11 3373

    [14]

    Zhu S F, Liu F, Chai Z Y, Qi Y T, Wu J S 2012 Acta Phys. Sin. 61 096401 (in Chinese)[朱思峰, 刘芳, 柴争义, 戚玉涛, 吴建设2012物理学报61 096401]

    [15]

    Ning Z L, Song Q Y, Liu Y J, Wang F Z, Wu X Y 2014 Comput. Electr. Eng. 40 456

    [16]

    Ma B, Deng H, Xie X Z, Liao X F 2015 China Commun. 12 106

    [17]

    Ma B, Xie X Z, Liao X F 2015 J. Electron. Inform. Technol. 37 874 (in Chinese)[马彬, 谢显中, 廖晓峰2015电子与信息学报37 874]

    [18]

    Chen T, Matinmikko M, Chen X F, Zhou X, Ahokangas P 2015 IEEE Commun. Mag. 53 126

    [19]

    Wang H C, Chen S Z, Xu H, Ai M, Shi Y 2015 IEEE Network 29 16

    [20]

    Shen Y 2013 Chin. Phys. B 22 058902

    [21]

    Yang X L, Tan X Z, Guan K 2015 Acta Phys. Sin. 64 108403 (in Chinese)[杨小龙, 谭学治, 关凯2015物理学报64 108403]

    [22]

    Tsai C, Yang F N 2013 J. Hydraul. Eng. 139 1265

    [23]

    Fei R, Cui D W 2009 Acta Phys. Sin. 58 5133 (in Chinese)[费蓉, 崔杜武2009物理学报58 5133]

    [24]

    Alavipoor F S, Karimi S, Balist J, Khakian A H 2016 Global. J. Environ. Sci. Manage. 2 197

    [25]

    Marco W, Martijn V O 2012 Reinforcement Learning:State of the Art (Berlin:Springer) pp223-229

  • [1]

    Falowo O E, Chan H A 2012 Eurasip J. Wirel. Comm. 221

    [2]

    Zhu K, Niyato D, Wang P 2010 Proceedings of IEEE Wireless Communications and Networking Conference Sydney, Australia, April 18-21, 2010 p1

    [3]

    Yan X, Šekerciğlu lu Y A, Narayanan S 2010 Comput. Networking 54 1848

    [4]

    Liu J, Xiong Q Y, Shi X, Wang K, Shi W R 2015 Chin. Phys. B 24 076401

    [5]

    Ahmed A, Boulahia L M, Gaiti D 2014 IEEE Commun. Surv. Tutorials 16 776

    [6]

    Hasib A, Fapojuwo A 2008 IEEE Trans. Veh. Technol. 57 2426

    [7]

    Kunarak S, Sulessathira R, Dutkiewicz E 2013 Proceedings of IEEE International Conference of Region 10 Xi'an, China, October 22-25, 2013 p1

    [8]

    Salem M, Ismail M, Misran N 2011 J. Appl. Sci. 11 336

    [9]

    Niyato D, Hossain E 2009 IEEE Trans. Veh. Technol. 58 2008

    [10]

    Naghavi P, Rastegar S H, Shah-Mansouri V, Kebriaei H 2016 IEEE Wirel. Commun. Lett. 5 52

    [11]

    Stevens-Navarro E, Martinez-Morales J D, Pineda-Rico U 2012 J. Appl. Res. Technol. 10 534

    [12]

    Wang N, Shi W X, Fan S S, Liu S X 2011 Proceedings of 2nd International Conference on Challenges in Environmental Science and Computer Engineering Haikou, China, December 14-15, 2011 p55

    [13]

    Liu K M 2014 J. Inf. Comput. Secor. 11 3373

    [14]

    Zhu S F, Liu F, Chai Z Y, Qi Y T, Wu J S 2012 Acta Phys. Sin. 61 096401 (in Chinese)[朱思峰, 刘芳, 柴争义, 戚玉涛, 吴建设2012物理学报61 096401]

    [15]

    Ning Z L, Song Q Y, Liu Y J, Wang F Z, Wu X Y 2014 Comput. Electr. Eng. 40 456

    [16]

    Ma B, Deng H, Xie X Z, Liao X F 2015 China Commun. 12 106

    [17]

    Ma B, Xie X Z, Liao X F 2015 J. Electron. Inform. Technol. 37 874 (in Chinese)[马彬, 谢显中, 廖晓峰2015电子与信息学报37 874]

    [18]

    Chen T, Matinmikko M, Chen X F, Zhou X, Ahokangas P 2015 IEEE Commun. Mag. 53 126

    [19]

    Wang H C, Chen S Z, Xu H, Ai M, Shi Y 2015 IEEE Network 29 16

    [20]

    Shen Y 2013 Chin. Phys. B 22 058902

    [21]

    Yang X L, Tan X Z, Guan K 2015 Acta Phys. Sin. 64 108403 (in Chinese)[杨小龙, 谭学治, 关凯2015物理学报64 108403]

    [22]

    Tsai C, Yang F N 2013 J. Hydraul. Eng. 139 1265

    [23]

    Fei R, Cui D W 2009 Acta Phys. Sin. 58 5133 (in Chinese)[费蓉, 崔杜武2009物理学报58 5133]

    [24]

    Alavipoor F S, Karimi S, Balist J, Khakian A H 2016 Global. J. Environ. Sci. Manage. 2 197

    [25]

    Marco W, Martijn V O 2012 Reinforcement Learning:State of the Art (Berlin:Springer) pp223-229

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Zhong Min, Li Jiu-Sheng. Switchable frequency terahertz vortex beam generator. Acta Physica Sinica, 2022, 71(21): 217401. doi: 10.7498/aps.71.20221184
    [3] Sun Ying-Lu, Duan Yan-Min, Cheng Meng-Yao, Yuan Xian-Zhang, Zhang Li, Zhang Dong, Zhu Hai-Yong. Triple wavelength-switchable lasing in yellow-green based on frequency mixing of self-Raman operation. Acta Physica Sinica, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [4] Pan Xin-Nong, Wang Ge-Li, Yang Pei-Cai. Extracting the driving force signal from hierarchy system based on slow feature analysis. Acta Physica Sinica, 2017, 66(8): 080501. doi: 10.7498/aps.66.080501
    [5] Luo Xiao-Yuan, Li Hao, Ma Ju-Hai. Topology optimization algorithm for wireless networks based on the algebraic properties of minimum rigid graph. Acta Physica Sinica, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [6] He Zhi, Li Li, Yao Chun-Mei, Li Yan. Non-Markovianity of open two-level system by means of quantum coherence. Acta Physica Sinica, 2015, 64(14): 140302. doi: 10.7498/aps.64.140302
    [7] Yang Xiao-Long, Tan Xue-Zhi, Guan Kai. Spectrum handoff model based on preemptive queuing theory in cognitive radio networks. Acta Physica Sinica, 2015, 64(10): 108403. doi: 10.7498/aps.64.108403
    [8] Teng Qi-Zhi, Tan Xin, Wu Zi-Yu, Shen Jun, Wang Hai-Feng. Comprehensive evaluation method in the cooling mode of large-scale hydro-generators. Acta Physica Sinica, 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [9] Sun Yi-Jie, Zhang Guo-Liang, Zhang Sheng-Xiu, Zeng Jing. Consensus analysis for a class of heterogeneous multi-agent systems in fixed and switching topology. Acta Physica Sinica, 2014, 63(22): 220201. doi: 10.7498/aps.63.220201
    [10] Yin Wen-Ye, He Wei-Ji, Gu Guo-Hua, Chen Qian. A new full waveform analysis approach using simulated tempering Markov chain Monte Carlo method. Acta Physica Sinica, 2014, 63(16): 164205. doi: 10.7498/aps.63.164205
    [11] Xie Wen-Xian, Xu Peng-Fei, Cai Li, Li Dong-Ping. Non-Markovian diffusion of the stochastic system with a biexponentical dissipative memory kernel. Acta Physica Sinica, 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [12] Lin Fang, Hu Dan-Qing, Li Le-Le. Application of a fractional algorithm to studying the competition between dissipation and fluctuation in non-Markov process. Acta Physica Sinica, 2013, 62(12): 120503. doi: 10.7498/aps.62.120503
    [13] Cai Cheng-Jun, Fang Mao-Fa, Xiao Xing, Huang Jiang. Atomic entropy squeezing of the Jaynes-Cummings model driven by classical fields in non-Markovian environment. Acta Physica Sinica, 2012, 61(21): 210303. doi: 10.7498/aps.61.210303
    [14] Chai Zheng-Yi, Liu-Fang, Zhu Si-Feng. Chaos quantum clonal algorithm for decision engine of cognitive wireless network. Acta Physica Sinica, 2012, 61(2): 028801. doi: 10.7498/aps.61.028801
    [15] Zhu Si-Feng, Liu Fang, Chai Zheng-Yi, Qin Yu-Tao, Wu Jian-She. Simple harmonic oscillator immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Acta Physica Sinica, 2012, 61(9): 096401. doi: 10.7498/aps.61.096401
    [16] Chai Zheng-Yi, Liu Fang, Zhu Si-Feng. Chaos quantum clonal algorithm for spectrum allocation of cognitive wireless network. Acta Physica Sinica, 2011, 60(6): 068803. doi: 10.7498/aps.60.068803
    [17] Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [18] Liu Yang-Zheng, Jiang Chang-Sheng. Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [19] Fei Rong, Cui Du-Wu. Moving object in Markov stochastic processes: spacial characteristic analysis and approximate approach research. Acta Physica Sinica, 2009, 58(8): 5133-5141. doi: 10.7498/aps.58.5133
    [20] WANG HUAN-YUAN, CHANG SHOU-KUNG, PAN SHIAO-THUR. A MAGNETIC STUDY OF SOME IRON-NICKEL-ALUMINUM ALLOYS. Acta Physica Sinica, 1960, 16(4): 214-228. doi: 10.7498/aps.16.214
Metrics
  • Abstract views:  4845
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2016
  • Accepted Date:  07 September 2016
  • Published Online:  05 December 2016

/

返回文章
返回