Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Omnidirectional photonic bandgap of the one-dimensional plasma photonic crystal based on a novel Fibonacci quasiperiodic structure

Zhang Juan

Citation:

Omnidirectional photonic bandgap of the one-dimensional plasma photonic crystal based on a novel Fibonacci quasiperiodic structure

Zhang Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The binary one-dimensional plasma photonic crystal (1DPPC) based on Fibonacci quasiperiodic structure is studied systematically in this paper. We consider the two simplest cases. In one case, the initial sequences F0 and F1 are both of single layer structure. In another case, one initial sequence (F0 or F1) is of a single layer structure, while the other one (F1 or F0) is of a double layer structure. Thus there are ten different kinds of initial sequences in total. The photonic bandgap characteristics of the 1DPPC with these different initial sequences and numbers of period are analyzed. On these bases, a novel structure of one-dimensional plasma photonic crystal (F3)3 with initial sequence of F0=AP, F1=P and F0=PA, F1=P is proposed in this paper to enlarge the omnidirectional photonic bandgap (OPBG). Compared with previously reported structures in the literature, this structure is simple in configuration with fewer layers and materials, and its OPBG width is wide. The influences of the parameters of the plasma material, such as the thickness, plasma frequency and collision frequency, on the OPBG characteristics of this structure are also discussed. The OPBG width increases with the increase of the thickness and plasma frequency of the plasma layer. Compared with the structures in the literature, the change of OPBG width is the fastest for the proposed structure when the parameters are relatively small. And with the same parameters, the OPBG width for the proposed structure is the widest when the parameters are greater than a certain value. The plasma collision frequency has no effect on the OPBG width for all the structures. But the OPBG width for the proposed structure is the widest when this parameter has the same value. The reason why the proposed structure has an optimal OPBG width is explained by analyzing the dispersion properties of the plasma. The real and imaginary part of the dielectric constant of plasma change with frequency significantly only in the low frequency region. Since the imaginary part of dielectric constant is nearly zero when the frequency is larger than 2 GHz, only the dispersion effect of the real part of dielectric constant needs to be considered in the frequency range we investigate. And its value is much greater than that of conventional medium in the same frequency range. This makes the high-reflectance bands of the 1DPPC broader than those in the case of pure photonic interference phenomena with conventional medium. On the other hand, the corresponding highest proportion of plasma layers in the whole quasiperiodic structure can also be used to explain the broadest band gap of (F3)3. These results can provide important theoretical guidance for designing the novel omnidirectional reflectors.
      Corresponding author: Zhang Juan, juanzhang@staff.shu.edu.cn
    • Funds: Project supported by the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ045) and the Open Foundation of Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University (Grant No. SKLSFO2014-04).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Zhang R J, Wang Y 2015 J. Appl. Phys. 117 213101

    [5]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quantum Electron. 22 293

    [6]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [7]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [8]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [9]

    Fang Y T, Ni Y X, He H Q, Hu J X 2014 Opt. Commun. 320 99

    [10]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 104215

    [11]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [12]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A:Mater. Sci. Process. 68 25

    [13]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [14]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [15]

    Zhang H F, Liu S B, Kong X K, Bian B R, Zhao H C 2012 Opt. Commun. 285 5235

    [16]

    Wu C J, Rao Y N, Han W H 2010 Prog. Electromagn. Res. 100 27

    [17]

    Wang S Q, Yang X B, Liu C Y T 2014 Phys. Lett. A 378 1326

    [18]

    Vardeny Z V, Nahata A, Agrawal A 2013 Nat. Photon. 7 177

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Zou J H, Zhang J 2016 Acta Phys. Sin. 65 014214 (in Chinese)[邹俊辉, 张娟2016物理学报 65 014214]

    [21]

    Lusk D, Abdulhalim I, Placido F 2001 Opt. Commun. 198 273

    [22]

    Gharaati A, Zare Z 2011 Prog. Electromagn. Res. M 20 81

    [23]

    Zhang H F, Liu S B 2013 Opt. Quant. Electron. 45 925

    [24]

    Zhang H F, Liu S B, Kong X K 2013 Solid State Commun. 174 19

    [25]

    Zhang H F, Zhen J P, He W P 2013 Optik 124 4182

    [26]

    Zhang H F, Liu S B, Kong X K, Bian B R, Dai Y 2012 Phys. Plasmas 19 112102

    [27]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge:Cambridge University Press) pp54-74

    [28]

    Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [29]

    Lee H Y, Yao T 2003 J. Appl. Phys. 93 819

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Zhang R J, Wang Y 2015 J. Appl. Phys. 117 213101

    [5]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quantum Electron. 22 293

    [6]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [7]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [8]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [9]

    Fang Y T, Ni Y X, He H Q, Hu J X 2014 Opt. Commun. 320 99

    [10]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 104215

    [11]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [12]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A:Mater. Sci. Process. 68 25

    [13]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [14]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [15]

    Zhang H F, Liu S B, Kong X K, Bian B R, Zhao H C 2012 Opt. Commun. 285 5235

    [16]

    Wu C J, Rao Y N, Han W H 2010 Prog. Electromagn. Res. 100 27

    [17]

    Wang S Q, Yang X B, Liu C Y T 2014 Phys. Lett. A 378 1326

    [18]

    Vardeny Z V, Nahata A, Agrawal A 2013 Nat. Photon. 7 177

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Zou J H, Zhang J 2016 Acta Phys. Sin. 65 014214 (in Chinese)[邹俊辉, 张娟2016物理学报 65 014214]

    [21]

    Lusk D, Abdulhalim I, Placido F 2001 Opt. Commun. 198 273

    [22]

    Gharaati A, Zare Z 2011 Prog. Electromagn. Res. M 20 81

    [23]

    Zhang H F, Liu S B 2013 Opt. Quant. Electron. 45 925

    [24]

    Zhang H F, Liu S B, Kong X K 2013 Solid State Commun. 174 19

    [25]

    Zhang H F, Zhen J P, He W P 2013 Optik 124 4182

    [26]

    Zhang H F, Liu S B, Kong X K, Bian B R, Dai Y 2012 Phys. Plasmas 19 112102

    [27]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge:Cambridge University Press) pp54-74

    [28]

    Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [29]

    Lee H Y, Yao T 2003 J. Appl. Phys. 93 819

  • [1] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [2] Fu Tao, Ouyang Zheng-Biao. Simulation of cherenkov radiation oscillation in a plasma-filled metallic photonic crystal. Acta Physica Sinica, 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [3] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [4] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [5] Chen A-Li, Liang Tong-Li, Wang Yue-Sheng. Study on band gap properties of two-dimensional 8-fold quasi-periodic phononic crystals. Acta Physica Sinica, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [6] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [7] Yang Li-Feng, Wang Ya-Fei, Zhou Ying. The transmission properties in one-dimensional piezoelectric Fibonacci-class quasi-periodical phononic crystals. Acta Physica Sinica, 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [8] Liu Xiao-Liang, Huang Xiao-Mei, Xu Hui, Ren Yi. The statistical properties and electronic transfer coefficients of Fibonacci sequence. Acta Physica Sinica, 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [9] Zhang Hai-Feng, Ma Li, Liu Shao-Bin. Defect mode properties of magnetized plasma photonic crystals. Acta Physica Sinica, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [10] Ma Li, Zhang Hai-Feng, Liu Shao-Bin. Study on the defect mode properties of unmagnetized plasma photonic crystals. Acta Physica Sinica, 2008, 57(8): 5089-5094. doi: 10.7498/aps.57.5089
    [11] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [12] Cao Yong-Jun, Yang Xu. Transmission properties of the generalized Fibonacci quasi-periodical phononic crystal. Acta Physica Sinica, 2008, 57(6): 3620-3624. doi: 10.7498/aps.57.3620
    [13] Ma Xiao-Tao, Zheng Wan-Hua, Ren Gang, Fan Zhong-Chao, Chen Liang-Hui. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal. Acta Physica Sinica, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [14] Zeng Jun, Pan Jie-Yong, Dong Jian-Wen, Wang He-Zhou. Band gap characteristics of compound structure composed of lattices with different periodic constants. Acta Physica Sinica, 2006, 55(6): 2785-2788. doi: 10.7498/aps.55.2785
    [15] Liu Shao-Bin, Gu Chang-Qing, Zhou Jian-Jiang, Yuan Nai-Chang. FDTD simulation for magnetized plasma photonic crystals. Acta Physica Sinica, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [16] Cao Yong-Jun, Dong Chun-Hong, Zhou Pei-Qin. Transmission properties of one-dimensional qusi-periodical phononic crystal. Acta Physica Sinica, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [17] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [18] WANG HUI, LI YONG-PING. AN EIGEN MATRIX METHOD FOR OBTAINING THE BAND STRUCTURE OF PHOTONIC CRYSTALS. Acta Physica Sinica, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [19] HE YONG-JUN, SU HUI-MIN, TANG FANG-QIONG, DONG PENG, WANG HE-ZHOU. COLLOIDAL AMORPHOUS CRYSTAL WITH A QUASI-COMPLETE PHOTONIC BAND GAP . Acta Physica Sinica, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] MAO HUI-BING, LU WEI, MA CHAO-HUI, ZHANG JIA-MING, JIANG SHAN, SHEN XUE-CHU. . Acta Physica Sinica, 1995, 44(10): 1588-1594. doi: 10.7498/aps.44.1588
Metrics
  • Abstract views:  4654
  • PDF Downloads:  213
  • Cited By: 0
Publishing process
  • Received Date:  23 June 2016
  • Accepted Date:  25 July 2016
  • Published Online:  05 December 2016

/

返回文章
返回