Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A cavity mode size adjustable high average power Ti: sapphire femtosecond regenerative amplifier

He Peng Teng Hao Zhang Ning-Hua Liu Yang-Yang Wang Zhao-Hua Wei Zhi-Yi

Citation:

A cavity mode size adjustable high average power Ti: sapphire femtosecond regenerative amplifier

He Peng, Teng Hao, Zhang Ning-Hua, Liu Yang-Yang, Wang Zhao-Hua, Wei Zhi-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High average power femtosecond lasers based on Ti:sapphire are widely used in strong-field physics and ultrafast dynamics.Continued advances include isolated attosecond pulse generation,few-cycle pulse generation,ultrafast spectroscopy,time-resolved photo-chemical reaction dynamics and laser micro-machining benefit greatly from use of such laser systems.The regenerative amplifiers are mostly utilized and have inherent advantages over multipass ones for applications in chirped pulse amplification.In this paper we describe a design,performance,and the characterizations of a novel linear cavity regenerative amplifier which has produced 4.8 W average power with 35 fs pulse durations at 1 kHz repetition rate. The main difficulty in designing and constructing a high average power Ti:sapphire regenerative cavity is thermal lensing effect.In order to generate amplified pulses with an output power exceeding 5 W at 1 kHz,a green pump power higher than 20 W is required.Meanwhile,the focal pump beam diameter on the surface of Ti:sapphire crystal should have sub-millimeter mode size to demonstrate large pump fluence,inducing a focal length of a thermal lens about 100 mm,i.e.,which is much less than the scale of the cavity length.For our experiments,a cavity mode size adjustable geometry is employed to counteract thermal lensing effect and to optimize the conversion efficiency of the amplifier.We first characterize the cavity stability by applying the well-known ABCD matrix formalism.The cavity consisting of R=900 mm concave mirror,an 2=800 mm lens and a plane mirror has two stability ranges with increasing the focal length of the thermal lens.In order to obtain a highest thermal tolerance,the optimal cavity parameters are resolved when two stability zones merge into one.After characterizing the cavity in detail,we calculate the cavity mode and the pump beam size at the position of the Ti:sapphire rod as a function of the thermal focal length.The optimal mode radius occurs at 312 m,corresponding to the intersection point of two curves.Stability curve exhibits a weak thermal sensitivity which is defined as the change of radius of cavity mode size per unit focal power change of thermal lens, keeping well below 10 m/D in a range of 2 D-4 D.The calculated results show that the active compensation for thermal lens focal length from 100 mm to could be achieved by adjusting the lens position,without changing the cavity. 20 fs,3 nJ pulses at a repetition rate of 82 MHz produced by a home-made Kerr-lens mode-locked oscillator are first sent to a Martinez stretcher by using a 1200 lines/mm holographic reflectance grating,which temporally stretches the laser pulses to 200 ps.The seed pulses out of the stretcher is then injected into the regenerative cavity depicted above. The 20 mJ pumping energy at 1 kHz is focused through the R=900 mm concave mirror into a 10 mm Brewster-cut Ti:sapphire rod,which is cooled to 250 K by thermoelectric elements.Condensation was avoided by placing the crystal into a small evacuated chamber.Mode matchings of pump and laser beam are found to be of critical importance for high energy extraction efficiency and high beam quality.In our experiments it is accomplished by fine adjusting the F=800 mm cavity lens and the pump beam size.The amplified power of 6.5 W at 1 kHz is obtained with minimum beam distortion,giving a 33.6% slope efficiency.The trapped pulse is built-up quickly and saturated after 8-round trips. The beam size of the amplified laser is expanded to 15 mm in diameter before compressor.A transmission efficiency of 73.8% is achieved through the grating-pair Treacy-type compressor,leading to a 4.8 mJ pulse energy.The grating has a groove density of 1500 lines/mm,and the compressed output spectrum has a full width at half maximum of 29 nm. The pulse duration measurement is performed by using an interferometric autocorrelation.As a result,a typical autocorrelation trace corresponding to a 35 fs pulse width is displayed,and agrees well with the 32 fs transform limit.The far-field beam profile after the compressor is round and Gaussian in both s and p planes,respectively.This scheme is also sufficiently reliable and robust so that no components of the laser system were damaged over a year of operation. In summary,the theoretical analysis and experimental results show that the regenerative cavity developed in this work exhibits a high conversion efficiency and an extraordinary thermal stability,and it is very suitable for high power and high efficient amplification of femtosecond Ti:sapphire pulses.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi, hteng@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ12004701) and the national Basic Research Program of China (Grant No. 2013CB922401).
    [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York:Academic Press) pp143-213

    [3]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [4]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195

    [5]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [6]

    Fuß W, Schmid W E, Trushin S A 2000 J. Chem. Phys. 112 8347

    [7]

    Valette S, Audouard E, Le Harzic R, Huot N, Laporte P, Fortunier R 2005 Appl. Surf. Sci. 239 381

    [8]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese)[王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫2004物理学报 53 87]

    [9]

    Koechner W 2013 Solid-State Laser Engineering (Berlin:Springer) pp350-386

    [10]

    Yang J Z H, Walker B C 2001 Opt. Lett. 26 453

    [11]

    Backus S, Bartels R, Thompson S, Dollinger R, Kapteyn H C, Murnane M M 2001 Opt. Lett. 26 465

    [12]

    Brown D C 2005 IEEE J. Sel. Top Quant. 11 587

    [13]

    Steffen J, Lortscher J P, Herziger G 1972 IEEE J. Quant. Electr. 8 239

    [14]

    Wei Z Y 1990 Laser J. 11 234(in Chinese)[魏志义1990激光杂志 11 234]

    [15]

    Clarkson W A 2001 J. Phys. D:Appl. Phys. 34 2381

    [16]

    Salin F, Le Blanc C, Squier J, Barty C 1998 Opt. Lett. 23 718

    [17]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901

  • [1]

    Mourou G A, Tajima T, Bulanov S V 2006 Rev. Mod. Phys. 78 309

    [2]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York:Academic Press) pp143-213

    [3]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891

    [4]

    Wirth A, Hassan M T, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195

    [5]

    Cerullo G, Lanzani G, Nisoli M, Priori E, Stagira S, Zavelani-Rossi M, Svelto O, Poletto L, Villoresi P 2000 Appl. Phys. B 71 779

    [6]

    Fuß W, Schmid W E, Trushin S A 2000 J. Chem. Phys. 112 8347

    [7]

    Valette S, Audouard E, Le Harzic R, Huot N, Laporte P, Fortunier R 2005 Appl. Surf. Sci. 239 381

    [8]

    Wang Q S, Cheng G H, Liu Q, Sun C D, Zhao W, Chen G F 2004 Acta Phys. Sin. 53 87 (in Chinese)[王屹山, 程光华, 刘青, 孙传东, 赵卫, 陈国夫2004物理学报 53 87]

    [9]

    Koechner W 2013 Solid-State Laser Engineering (Berlin:Springer) pp350-386

    [10]

    Yang J Z H, Walker B C 2001 Opt. Lett. 26 453

    [11]

    Backus S, Bartels R, Thompson S, Dollinger R, Kapteyn H C, Murnane M M 2001 Opt. Lett. 26 465

    [12]

    Brown D C 2005 IEEE J. Sel. Top Quant. 11 587

    [13]

    Steffen J, Lortscher J P, Herziger G 1972 IEEE J. Quant. Electr. 8 239

    [14]

    Wei Z Y 1990 Laser J. 11 234(in Chinese)[魏志义1990激光杂志 11 234]

    [15]

    Clarkson W A 2001 J. Phys. D:Appl. Phys. 34 2381

    [16]

    Salin F, Le Blanc C, Squier J, Barty C 1998 Opt. Lett. 23 718

    [17]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901

  • [1] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [2] Wang Zhi-Peng, Guan Bao-Lu, Zhang Feng, Yang Jia-Wei. Liquid crystal tunable vertical cavity surface emission laser with inner cavity sub-wavelength grating. Acta Physica Sinica, 2021, 70(22): 224208. doi: 10.7498/aps.70.20210957
    [3] Tian Long, Wang Qing-Wei, Yao Wen-Xiu, Li Qing-Hui, Wang Ya-Jun, Zheng Yao-Hui. Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator. Acta Physica Sinica, 2020, 69(4): 044201. doi: 10.7498/aps.69.20191417
    [4] Sun Tian-Jiao, Qian Xuan, Shang Ya-Xuan, Liu Jian, Wang Kai-You, Ji Yang. Formation mechanism of coherent rainbows. Acta Physica Sinica, 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [5] Yang Shuai-Shuai, Teng Hao, He Peng, Huang Hang-Dong, Wang Zhao-Hua, Dong Quan-Li, Wei Zhi-Yi. 10 mJ femtosecond Ti: Sapphire regenerative amplifier with large mode size. Acta Physica Sinica, 2017, 66(10): 104209. doi: 10.7498/aps.66.104209
    [6] Yang Hong-Zhi, Zhao Chang-Ming, Zhang Hai-Yang, Yang Su-Hui, Li Chen. All-fiber radio frequency-modulated pulsed laser based on frequency-shift feedback loop. Acta Physica Sinica, 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [7] Zhang Wei, Teng Hao, Wang Zhao-Hua, Shen Zhong-Wei, Liu Cheng, Wei Zhi-Yi. A ring Ti:sapphire regenerative amplifier for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [8] Liu Cheng, Wang Zhao-Hua, Shen Zhong-Wei, Zhang Wei, Teng Hao, Wei Zhi-Yi. A long ring regenerative cavity for high energy chirped pulse amplification. Acta Physica Sinica, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [9] He Guang-Yuan, Guo Jing, Jiao Zhong-Xing, Wang Biao. Control of the thermal lensing effect in solid-state laser. Acta Physica Sinica, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [10] Bai Yang-Bo, Xiang Wang-Hua, Zu Peng, Zhang Gui-Zhong. Wavelength-tunable linear-cavity passively mode-locked Yb-doped fiber laser based on volume Bragg grating. Acta Physica Sinica, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [11] Wang Tong-Xi, Guan Bao-Lu, Guo Xia, Shen Guang-Di. Study on the effects of carrier transport and parasitic parameters on the modulation response of tunnel regenerated vertical-cavity surface-emitting lasers with double active regions. Acta Physica Sinica, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [12] Liu Chong, Ge Jian-Hong, Xiang Zhen, Chen Jun. Influence of spherical aberration of the thermal lens on the mode profile of a large-volume TEM00-mode resonator. Acta Physica Sinica, 2008, 57(3): 1704-1708. doi: 10.7498/aps.57.1704
    [13] Feng Wei-Wei, Lin Li-Huang, Wang Wen-Yao, Li Ru-Xin, Wang Li-Chun. Generation of chirped pulses at high repetition rate with a Ti:sapphire regenerative amplifier. Acta Physica Sinica, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [14] Niu Yan-Xiong, Yu Ye, Duan Xiao-Feng, Zhang Peng, Wu Dong-Sheng, Wang Xiu-Sheng. Study on thermal damage to balsaming lens induced by multi-pulse laser. Acta Physica Sinica, 2006, 55(9): 4478-4482. doi: 10.7498/aps.55.4478
    [15] ZHANG GUANG-YIN, SONG FENG, FENG YAN, XU JING-JUN. A SOLID STATE LASER RESONATOR CAPABLE OF COMPENSATING THERMAL LENS EFFECT ADAPTIVELY. Acta Physica Sinica, 2000, 49(8): 1495-1498. doi: 10.7498/aps.49.1495
    [16] SHEN YU-ZHEN, WANG QING-YUE, XING QI-RONG, SHI JI-YING. SELF-PHASE MODULATION IN CHIRPED-PULSE AMPLIFICATION. Acta Physica Sinica, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
    [17] WANG QING-YUE, SHEN JIA-QIANG, XU JIAN, XIANG WANG-HUA, ZHANG ZHAO, ZHANG RUO-BING. EXPERIMENTAL STUDY FOR NON-CAVITY LENGTH MATCHED ADDITIVE PULSE MODE-LOCKING LASER. Acta Physica Sinica, 1994, 43(8): 1289-1294. doi: 10.7498/aps.43.1289
    [18] ZHANG GUANG-YIN. TEM00-THERMO-INSENSITIVE CAVITY IN THE PRESENCE OF SEVERAL THERMO-PERTURBATIONS. Acta Physica Sinica, 1981, 30(6): 802-809. doi: 10.7498/aps.30.802
    [19] YE BI-QING, MA ZHONG-LIN. THE THERMO-OPTIC EFFECT OF AN OPTICAL ELEMENT IN LASER RESONATOR. Acta Physica Sinica, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
    [20] ZHANG GUANG-YIN. SOME NEW ASPECTS ON TEM00-THERMO-INSENSITIVE CAVITY. Acta Physica Sinica, 1979, 28(6): 891-893. doi: 10.7498/aps.28.891
Metrics
  • Abstract views:  5182
  • PDF Downloads:  281
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2016
  • Accepted Date:  16 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回