Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium

Chen Wei-Jun Lu Ke-Qing Hui Juan-Li Zhang Bao-Ju

Citation:

Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium

Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The propagation and interactions of Airy-Gaussian beams in a saturable nonlinear medium are investigated numerically based on the split-step Fourier transform method. We show that the propagation of a single Airy-Gaussian beam in the saturable nonlinear medium can generate breathing solitons under steady state conditions. The generation and propagation of these breathing solitons can be affected by the initial amplitude and the field distribution factor of the single Airy-Gaussian beam. In a certain power range, these breathing solitons propagate along the acceleration direction with a controllable tilted angle. In the domain existing in these breathing solitons and for a given value of the field distribution factor of the single Airy-Gaussian beam, when the initial amplitude of the single Airy-Gaussian beam increases gradually, the periodicity of these breathing solitons becomes from small to larger and the tilted angle of these breathing solitons increases monotonically. When the value of the initial amplitude of the single Airy-Gaussian beam is given, the bigger the value of the field distribution factor of the single Airy-Gaussian beam, the smaller the tilted angle of these breathing solitons. Furthermore, the stability of these breathing solitons has been investigated by using the beam propagation method, and it has been found that they are stable. We find that the propagations of two Airy-Gaussian beams in the saturable nonlinear medium can generate not only soliton pairs but also interactions between two Airy-Gaussian beams. When the two Airy-Gaussian beams interact with each other, it is found that the in-phase Airy-Gaussian beams attract each other and exhibit a single breathing soliton with strong intensity in the beam center and some symmetric soliton pairs with weak intensity near both sides of the beam center. The smaller the interval between the two incident Airy-Gaussian optical components, the stronger the attraction between two Airy-Gaussian beams, and the less the numbers of the soliton pairs. The energies of both the main lobes of two Airy-Gaussian beams and the single breathing soliton increase with the value of the field distribution factor of two Airy-Gaussian beams. On the other hand, the out-of-phase Airy-Gaussian beams repel each other and exhibit only symmetric soliton pairs on both sides of the beam center. Our analysis indicates that the repellant of two out-of-phase Airy-Gaussian beams becomes big when the interval between two incident Airy-Gaussian optical components decreases and the number of the soliton pairs becomes less when the field distributions of two beams are close to the Gaussian distribution.
      Corresponding author: Lu Ke-Qing, kqlutj@126.com
    • Funds: Project supported by the Natural Science Foundation of Tianjin City, China (Grant No. 13JCYBJC16400).
    [1]

    Kovalev A A, Kotlyar V V, Porfirev A A 2015 Phys. Rev. A 91 053840

    [2]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [3]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Chen W, Lu K, Hui J, Feng T, Liu S, Niu P, Yu L 2013 Opt. Express 21 15595

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Kaminer I, Segev M, Christodoulides D N 2011 Phys. Rev. Lett. 106 213903

    [7]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842

    [8]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814

    [9]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [10]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [11]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [12]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese)[岳阳阳, 肖寒, 王子潇, 吴敏2013物理学报 62 044205]

    [13]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719

    [14]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585

    [15]

    Hu Y, Zhang P, Lou C, Huang S, Xu J, Chen Z G 2010 Opt. Lett. 35 2260

    [16]

    Chu X, Zhou G, Chen R 2012 Phys. Rev. A 85 013815

    [17]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [18]

    Cheng H, Zang W, Zhou W, Tian J 2010 Opt. Express 18 20384

    [19]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [20]

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207 (in Chinese)[任志君, 吴琼, 周卫东, 吴根柱, 施逸乐2012物理学报 61 174207]

    [21]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [22]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [23]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese)[张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚2013物理学报 62 034209]

    [24]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258

    [25]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648

    [26]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [27]

    Chen R, Yin C, Chu X, Wang H 2010 Phys. Rev. A 82 043832

    [28]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504

    [29]

    Deng D 2011 Eur. Phys. J. D 65 553

    [30]

    Zhang X 2016 Opt. Commun. 367 364

    [31]

    Zhou M, Chen C, Chen B, Peng X, Peng Y, Deng D 2015 Chin. Phys. B 24 124102

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102

    [33]

    Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P 1999 Phys. Rev. E 60 2377

  • [1]

    Kovalev A A, Kotlyar V V, Porfirev A A 2015 Phys. Rev. A 91 053840

    [2]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [3]

    Chen Z, Segev M, Christodoulides D N 2012 Rep. Prog. Phys. 75 086401

    [4]

    Chen W, Lu K, Hui J, Feng T, Liu S, Niu P, Yu L 2013 Opt. Express 21 15595

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Kaminer I, Segev M, Christodoulides D N 2011 Phys. Rev. Lett. 106 213903

    [7]

    Panagiotopoulos P, Abdollahpour D, Lotti A, Couairon A, Faccio D, Papazoglou D G, Tzortzakis S 2012 Phys. Rev. A 86 013842

    [8]

    Shen M, Gao J, Ge L 2015 Sci. Rep. 5 09814

    [9]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [10]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [11]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [12]

    Yue Y Y, Xiao H, Wang Z X, Wu M 2013 Acta Phys. Sin. 62 044205 (in Chinese)[岳阳阳, 肖寒, 王子潇, 吴敏2013物理学报 62 044205]

    [13]

    Bandres M A, Gutiérrez-Vega J C 2007 Opt. Express 15 16719

    [14]

    Zhang Y, Belić M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585

    [15]

    Hu Y, Zhang P, Lou C, Huang S, Xu J, Chen Z G 2010 Opt. Lett. 35 2260

    [16]

    Chu X, Zhou G, Chen R 2012 Phys. Rev. A 85 013815

    [17]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [18]

    Cheng H, Zang W, Zhou W, Tian J 2010 Opt. Express 18 20384

    [19]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [20]

    Ren Z J, Wu Q, Zhou W D, Wu G Z, Shi Y L 2012 Acta Phys. Sin. 61 174207 (in Chinese)[任志君, 吴琼, 周卫东, 吴根柱, 施逸乐2012物理学报 61 174207]

    [21]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [22]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [23]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese)[张泽, 刘京郊, 张鹏, 倪培根, Prakash Jai, 胡洋, 姜东升, Christodoulides Demetrios N, 陈志刚2013物理学报 62 034209]

    [24]

    Li J, Zang W, Tian J 2010 Opt. Lett. 35 3258

    [25]

    Li J, Fan X, Zang W, Tian J 2011 Opt. Lett. 36 648

    [26]

    Clerici M, Hu Y, Lassonde P, Millián C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Légaré F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [27]

    Chen R, Yin C, Chu X, Wang H 2010 Phys. Rev. A 82 043832

    [28]

    Chen C, Chen B, Peng X, Deng D 2015 J. Opt. 17 035504

    [29]

    Deng D 2011 Eur. Phys. J. D 65 553

    [30]

    Zhang X 2016 Opt. Commun. 367 364

    [31]

    Zhou M, Chen C, Chen B, Peng X, Peng Y, Deng D 2015 Chin. Phys. B 24 124102

    [32]

    Zhou M, Peng Y, Chen C, Chen B, Peng X, Deng D 2016 Chin. Phys. B 25 084102

    [33]

    Litchinitser N M, Królikowski W, Akhmediev N N, Agrawal G P 1999 Phys. Rev. E 60 2377

  • [1] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [2] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [4] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [5] Chen Wei-Jun, Song De, Li Ye, Wang Xin, Qin Xu-Lei, Liu Chun-Yang. Control on interaction of Airy-Gaussian beams in competing nonlinear medium. Acta Physica Sinica, 2019, 68(9): 094206. doi: 10.7498/aps.68.20190042
    [6] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [7] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [8] Fan Ding, Huang Zi-Cheng, Huang Jian-Kang, Wang Xin-Xin, Huang Yong. Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding. Acta Physica Sinica, 2015, 64(10): 108102. doi: 10.7498/aps.64.108102
    [9] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [10] Feng Tian-Run, Lu Ke-Qing, Chen Wei-Jun, Liu Shu-Qin, Niu Ping-Juan, Yu Li-Yuan. Study on surface waves formed at the interface between linear dielectric and centrosymmetric photorefractive crystals. Acta Physica Sinica, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [11] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [12] Zhao Lei, Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr?dinger equation. Acta Physica Sinica, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [13] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [15] Gong Hua-Ping, Lü Zhi-Wei, Lin Dian-Yang, Liu Song-Jiang. Optical power limiting effect of stimulated Brillouin scattering in CS2 media under non-focusing pump. Acta Physica Sinica, 2007, 56(9): 5263-5268. doi: 10.7498/aps.56.5263
    [16] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [17] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [18] Hao Zhong-Hua, Liu Jin-Song. Modulation on dynamical evolution of Gaussian beam in an unbiased serial photorefractive crystal circuit*. Acta Physica Sinica, 2002, 51(12): 2772-2777. doi: 10.7498/aps.51.2772
    [19] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [20] MA JIN-YI, QIU XI-JUN. INTERACTION BETWEEN AN ELECTRONIC SYSTEM AND MULTIPHOTONS IN A STRONG LASER FIELD. Acta Physica Sinica, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
Metrics
  • Abstract views:  5890
  • PDF Downloads:  307
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2016
  • Accepted Date:  03 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回