Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency-domain view of nonsequential double ionization in intense laser fields

Jin Fa-Cheng Wang Bing-Bing

Citation:

Frequency-domain view of nonsequential double ionization in intense laser fields

Jin Fa-Cheng, Wang Bing-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The research of laser-matter interaction has become a major direction in the field of laser physics since the invention of laser in 1960. Based on the development of the laser technique in the recent several decades, the ranges of the laser's frequency, intensity and pulse width have been explored widely. Therefore, the excitation, emission and ionization dynamic processes of a complex system in intense laser fields have been studied deeply. Especially, the nonsequential double ionization (NSDI) process has continuously attracted much attention from both experimental and theoretical sides. So far, the recollision picture is widely accepted as a dominating mechanism accounting for the NSDI process under an infrared (IR) laser field condition. This recollision picture can be classified into two mechanisms:the collision-ionization (CI) mechanism and the collision-excitation-ionization (CEI) mechanism. Recently, it is found that the NSDI process can take place in an extreme ultraviolet (XUV) laser field, and thus few-photon double ionization has been extensive studied by solving the full-dimensional time-dependent Schrdinger equation (TDSE) and the conventional nonstationary perturbation theory. This article reviews the frequency-domain theory of the NSDI processes of an atom in a monochromatic IR and IR+XUV two-color laser fields. In contrast with other approaches, such as the TDSE calculation and S-matrix method, the frequency-domain theory based on the nonperturbative quantum electrodynamics is involved in some advantages:(i) all the recollision processes, including high-order above-threshold ionization (HATI), high-order harmonic generation (HHG) and NSDI, can be dealt under the unified theoretical frame and can be decoupled into two processesa direct above-threshold ionization (ATI) followed by a laser-assisted collision (LAC) or by a laser-assisted recombination process, where these subprocesses can be investigated separately; (ii) the approach can save a lot of computation time because of its nature of time-independent. In this review, we show the different momentum spectral distributions under the CI and CEI mechanisms in the IR and IR+XUV laser fields. With the help of the channel analysis, we compare the contributions of the forward and backward collisions to the NSDI under two conditions of the monochromic IR and IR+XUV two-color laser fields. It is found that, in the CI mechanism, the backward collision makes major contribution to the NSDI in the IR laser field, while the forward collision plays a crucial role in the NSDI when the energy of the recolliding electron is very large in the IR+XUV two-color laser fields. Furthermore, by employing the saddle-point approximation, it is found that the momentum spectrum, whether in the monochromic IR or the IR+XUV two-color laser fields, is attributed to the interference between two trajectories at different saddle-point t0 and 2/1-t0 (1 is the frequency of an IR laser field) when the collision happens in each channel. On the other hand, in the CEI mechanism, the momentum spectra in the monochromic IR or the IR+XUV two-color laser fields present a distinct difference. It is further found that the momentum spectrum in the IR+XUV two-color laser fields is involved in the much more channels than that in the monochromic IR laser field, and thus the complex interference patterns in the momentum spectrum in the two-color laser fields are shown. Moreover, it is found that, in both the CI and CEI mechanisms, the XUV laser field in the NSDI not only can enhance the ionization probability of the first electron, but also can accelerate the first ionized electron so that the bound electron can gain much energy by collision, which is in favor of significant boost of the NSDI probability. This work can help people understand more deeply about the NSDI, and also may pave a way for us to continue investigating the NSDI process of complex system in intense laser fields.
      Corresponding author: Wang Bing-Bing, wbb@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275128, 11474348).
    [1]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993Phys. Rev. Lett. 70 1599

    [3]

    Liu C, Nakajima T 2008Phys. Rev. A 78 063424

    [4]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D, Ueda K 2016Phys. Rev. A 93 043422

    [5]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys Sin 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015物理学报64 143201]

    [6]

    Liu M, Guo Y C, Wang B B 2015Chin. Phys. B 24 073201

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [8]

    Hu Z, Lai X, Liu X, Chen J 2014Phys. Rev. A 89 043401

    [9]

    L'Huillier A, Schafer K J, Kulander K C 1991Phys. Rev. Lett. 66 2200

    [10]

    Watanabe S, Kondo K, Nabekawa Y, Sagisaka A, Kobayashi Y 1994Phys. Rev. Lett. 73 2692

    [11]

    Yuan Z, Guo Y C, Wang B B 2016Acta Phys. Sin. 65 114205(in Chinese)[袁仲, 郭迎春, 王兵兵2016物理学报65 114205]

    [12]

    Xiong W H, Xiao X R, Peng L Y, Gong Q 2016Phys. Rev. A 94 013417

    [13]

    Li W, Wang G L, Zhou X X 2016Chin. Phys. B 25 053203

    [14]

    Zhang J, Liu H F, Pan X F, Du H, Guo J, Liu X S 2016Chin. Phys. B 25 053202

    [15]

    Guan Z, Zhou X X, Bian X B 2016Phys. Rev. A 93 033852

    [16]

    Liu C, Zheng Y, Zeng Z, Li R 2016Phys. Rev. A 93 043806

    [17]

    Wang F, He L, Zhai C, Shi W, Zhang Q, Lan P, Lu P 2015Phys. Rev. A 92 063839

    [18]

    Zhao S F, Jin C, Lucchese R R, Le A T, Lin C D 2011Phys. Rev. A 83 033409

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [20]

    Becker A, Faisal F H 1999Phys. Rev. A 59 R1742

    [21]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [22]

    Yuan Z, Ye D, Xia Q, Liu J, Fu L 2015Phys. Rev. A 91 063417

    [23]

    Ma X, Zhou Y, Lu P 2016Phys. Rev. A 93 013425

    [24]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2016J. Chem. Phys. 144 024304

    [25]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015Phys. Rev. Lett. 115 123001

    [26]

    Hao X, Chen J, Li W, Wang B, Wang X, Becke W 2014Phys. Rev. Lett. 112 073002

    [27]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [28]

    Chen J, Liu J, Fu L B, Zheng W M 2000Phys. Rev. A 63 011404

    [29]

    Chen J, Liu J, Zheng W M 2002Phys. Rev. A 66 043410

    [30]

    Chen J, Nam C H 2002Phys. Rev. A 66 053415

    [31]

    van der Zwan E V, Lein M 2012Phys. Rev. Lett. 108 043004

    [32]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T Corkum P B 2015Nature 522 462

    [33]

    Li Y, Zhu X, Lan P, Zhang Q, Qin M, Lu P 2014Phys. Rev. A 89 045401

    [34]

    Hadas I, Bahabad A 2014Phys. Rev. Lett. 113 253902

    [35]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [36]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997Phys. Rev. Lett. 79 2967

    [37]

    McNeil B W J, Thompson N R 2010Nat. Phot. 4 814

    [38]

    Gallmann L, Cirelli C, Keller U 2012Annu. Rev. Phys. Chem. 63 447

    [39]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [40]

    Guo D S, Åberg T, Crasemann B 1989Phys. Rev. A 40 4997

    [41]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000Phys. Rev. A 61 063407

    [42]

    Fu P, Wang B, Li X, Gao L 2001Phys. Rev. A 64 063401

    [43]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007Phys. Rev. A 75 063419

    [44]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B 2009Phys. Rev. A 80 063408

    [45]

    Wang B, Guo Y, Zhang B, Zhao Z, Yan Z C, Fu P 2010Phys. Rev. A 82 043402

    [46]

    Wang B, Guo Y, Chen J, Yan Z C, Fu P 2012Phys. Rev. A 85 023402

    [47]

    Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z C, Wang B 2016Phys. Rev. A 93 043417

    [48]

    Keldysh L V 1964Zh. Eksp. Teor. Fiz. 47 1945

    [49]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [50]

    Faisal F H M 1973J. Phys. B:At. Mol. Phys. 6 L89

    [51]

    Reiss H R 1980Phys. Rev. A 22 1786

    [52]

    Guo D S, Åberg T 1988J. Phys. A 21 4577

    [53]

    Guo D S, Drake G W F 1992J. Phys. A 25 3383

    [54]

    Guo D S, Drake G W F 1992J. Phys. A 25 5377

    [55]

    Liu M 2015M. S. Thesis (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘敏2015硕士学位论文(北京:中国科学院大学)]

    [56]

    Volkov D M 1935Z. Phys. 94 250

    [57]

    Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Lindner F, Grasbon F, Paulus G G, Walther H, Moshammer R, Feuerstein B, Ullrich J 2003J. Phys. B 36 3269

    [58]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013Phys. Rev. A 88 043435

    [59]

    Radcliffe P, Arbeiter M, Li W B, Dsterer S, Redlin H, Hayden P, Hough P, Richardson V, Costello J T, Fennel T, Meyer M 2012New J. Phys. 14 043008

    [60]

    Liu A, Thumm U 2014Phys. Rev. A 89 063423

    [61]

    Jin F, Chen J, Yang Y, Yan Z C, Wang B 2016J. Phys. B:At. Mol. Opt. Phys. 49 195602

  • [1]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993Phys. Rev. Lett. 70 1599

    [3]

    Liu C, Nakajima T 2008Phys. Rev. A 78 063424

    [4]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D, Ueda K 2016Phys. Rev. A 93 043422

    [5]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys Sin 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015物理学报64 143201]

    [6]

    Liu M, Guo Y C, Wang B B 2015Chin. Phys. B 24 073201

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [8]

    Hu Z, Lai X, Liu X, Chen J 2014Phys. Rev. A 89 043401

    [9]

    L'Huillier A, Schafer K J, Kulander K C 1991Phys. Rev. Lett. 66 2200

    [10]

    Watanabe S, Kondo K, Nabekawa Y, Sagisaka A, Kobayashi Y 1994Phys. Rev. Lett. 73 2692

    [11]

    Yuan Z, Guo Y C, Wang B B 2016Acta Phys. Sin. 65 114205(in Chinese)[袁仲, 郭迎春, 王兵兵2016物理学报65 114205]

    [12]

    Xiong W H, Xiao X R, Peng L Y, Gong Q 2016Phys. Rev. A 94 013417

    [13]

    Li W, Wang G L, Zhou X X 2016Chin. Phys. B 25 053203

    [14]

    Zhang J, Liu H F, Pan X F, Du H, Guo J, Liu X S 2016Chin. Phys. B 25 053202

    [15]

    Guan Z, Zhou X X, Bian X B 2016Phys. Rev. A 93 033852

    [16]

    Liu C, Zheng Y, Zeng Z, Li R 2016Phys. Rev. A 93 043806

    [17]

    Wang F, He L, Zhai C, Shi W, Zhang Q, Lan P, Lu P 2015Phys. Rev. A 92 063839

    [18]

    Zhao S F, Jin C, Lucchese R R, Le A T, Lin C D 2011Phys. Rev. A 83 033409

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [20]

    Becker A, Faisal F H 1999Phys. Rev. A 59 R1742

    [21]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [22]

    Yuan Z, Ye D, Xia Q, Liu J, Fu L 2015Phys. Rev. A 91 063417

    [23]

    Ma X, Zhou Y, Lu P 2016Phys. Rev. A 93 013425

    [24]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2016J. Chem. Phys. 144 024304

    [25]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015Phys. Rev. Lett. 115 123001

    [26]

    Hao X, Chen J, Li W, Wang B, Wang X, Becke W 2014Phys. Rev. Lett. 112 073002

    [27]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [28]

    Chen J, Liu J, Fu L B, Zheng W M 2000Phys. Rev. A 63 011404

    [29]

    Chen J, Liu J, Zheng W M 2002Phys. Rev. A 66 043410

    [30]

    Chen J, Nam C H 2002Phys. Rev. A 66 053415

    [31]

    van der Zwan E V, Lein M 2012Phys. Rev. Lett. 108 043004

    [32]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T Corkum P B 2015Nature 522 462

    [33]

    Li Y, Zhu X, Lan P, Zhang Q, Qin M, Lu P 2014Phys. Rev. A 89 045401

    [34]

    Hadas I, Bahabad A 2014Phys. Rev. Lett. 113 253902

    [35]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [36]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997Phys. Rev. Lett. 79 2967

    [37]

    McNeil B W J, Thompson N R 2010Nat. Phot. 4 814

    [38]

    Gallmann L, Cirelli C, Keller U 2012Annu. Rev. Phys. Chem. 63 447

    [39]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [40]

    Guo D S, Åberg T, Crasemann B 1989Phys. Rev. A 40 4997

    [41]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000Phys. Rev. A 61 063407

    [42]

    Fu P, Wang B, Li X, Gao L 2001Phys. Rev. A 64 063401

    [43]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007Phys. Rev. A 75 063419

    [44]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B 2009Phys. Rev. A 80 063408

    [45]

    Wang B, Guo Y, Zhang B, Zhao Z, Yan Z C, Fu P 2010Phys. Rev. A 82 043402

    [46]

    Wang B, Guo Y, Chen J, Yan Z C, Fu P 2012Phys. Rev. A 85 023402

    [47]

    Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z C, Wang B 2016Phys. Rev. A 93 043417

    [48]

    Keldysh L V 1964Zh. Eksp. Teor. Fiz. 47 1945

    [49]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [50]

    Faisal F H M 1973J. Phys. B:At. Mol. Phys. 6 L89

    [51]

    Reiss H R 1980Phys. Rev. A 22 1786

    [52]

    Guo D S, Åberg T 1988J. Phys. A 21 4577

    [53]

    Guo D S, Drake G W F 1992J. Phys. A 25 3383

    [54]

    Guo D S, Drake G W F 1992J. Phys. A 25 5377

    [55]

    Liu M 2015M. S. Thesis (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘敏2015硕士学位论文(北京:中国科学院大学)]

    [56]

    Volkov D M 1935Z. Phys. 94 250

    [57]

    Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Lindner F, Grasbon F, Paulus G G, Walther H, Moshammer R, Feuerstein B, Ullrich J 2003J. Phys. B 36 3269

    [58]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013Phys. Rev. A 88 043435

    [59]

    Radcliffe P, Arbeiter M, Li W B, Dsterer S, Redlin H, Hayden P, Hough P, Richardson V, Costello J T, Fennel T, Meyer M 2012New J. Phys. 14 043008

    [60]

    Liu A, Thumm U 2014Phys. Rev. A 89 063423

    [61]

    Jin F, Chen J, Yang Y, Yan Z C, Wang B 2016J. Phys. B:At. Mol. Opt. Phys. 49 195602

  • [1] Ge Zhen-Jie, Su Xu, Bai Li-Hua. Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] Jiang Miao, Zheng Xiao-Ran, Lin Nan-Sheng, Li Ying-Jun. Multi-photon transition effects under different external field widths in electron-positron-pair creation process. Acta Physica Sinica, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [4] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] Bai Chun-Jiang, Cui Wan-Zhao, Yu Jin-Qing. Ionization state of ultra-thin carbon film irradiated by ultra-short intense laser pulse. Acta Physica Sinica, 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [6] Xiao Xiang-Ru, Wang Mu-Xue, Li Min, Geng Ji-Wei, Liu Yun-Quan, Peng Liang-You. Semiclassical methods for strong field ionization of atoms. Acta Physica Sinica, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [7] Zhao Lei, Zhang Qi, Dong Jing-Wei, Lü Hang, Xu Hai-Feng. Rydberg state excitations and double ionizations of different atoms in strong femtosecond laser field. Acta Physica Sinica, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [8] Wang Pin-Yi, Jia Xin-Yan, Fan Dai-He, Chen Jing. Resonance-like enhancement in high-order above-threshold ionzation of argon at different wavelengths. Acta Physica Sinica, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [9] Tang You-Fu, Liu Shu-Lin, Lei Na, Jiang Rui-Hong, Liu Ying-Hui. Feature analysis in frequency domain of Duffing system based on general local frequency. Acta Physica Sinica, 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [10] Xin Guo-Guo, Zhao Qing, Liu Jie. Maximum correlation at the transition to the saturation regime of nonsequential double ionization. Acta Physica Sinica, 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [11] Ye Di-Fa, Liu Jie, Xin Guo-Guo, Zhao Qing. The role of multi-return induced collision-ionization in atomic nonsequential double ionization. Acta Physica Sinica, 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [12] Ma Ning, Wang Mei-Shan, Yang Chuan-Lu, Xiong De-Lin, Li Xiao-Hu, Ma Xiao-Guang. Theoretical study of the influence of laser intensity on the population of the NO molecule electronic states. Acta Physica Sinica, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [13] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] Li Hong-Yun, Wang Bing-Bing, Jiang Hong-Bing, Chen Jing, Li Xiao-Feng, Liu Jie, Gong Qi-Huang, Fu Pan-Ming. The effect of static electric field on nonsequential double ionization. Acta Physica Sinica, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [16] Zhao Song-Feng, Zhou Xiao-Xin, Jin Cheng. Investigation of high order harmonic generation and ionization of model hydrogen atoms and real hydrogen atom in intense laser field. Acta Physica Sinica, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [17] Li Peng-Cheng, Zhou Xiao-Xin, Dong Chen-Zhong, Zhao Song-Feng. Investigation of the high harmonic generation and ionization of atoms with long-range and short-range potentials in intense laser fields. Acta Physica Sinica, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [18] ZHOU XIAO-XIN, LI BAI-WEN. CONTRIBUTION OF THE BOUND STATES AND CONTINUUM STATES OF AN ATOM IN INTENSE LASER FIELDS TO HIGH HARMONIC GENERATION . Acta Physica Sinica, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [19] SHAO LEIL, HUO YU-KUN, WANG PING-XIAO, KONG QING, YUAN XIANG-QUN, FENG LIANG. EFFECT OF FIELD POLARIZATION DIRECTION ON ACCELERATING ELECTRON WITH EXTRA-INTENSE STATIONARY LASER BEAM. Acta Physica Sinica, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [20] ZHENG LI-PING, QIU XI-JUN. THE INFLUENCE OF THE INTENSITY AND THE FREQUENCY ON THE ENHANCED IONIZATION BEHA VIOR OF MULTIATOMIC MOLECULAR IONS IN THE INTENSE LASER FIELDS. Acta Physica Sinica, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
Metrics
  • Abstract views:  4684
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2016
  • Accepted Date:  06 November 2016
  • Published Online:  05 November 2016

/

返回文章
返回