Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ferromagnetism of Al-doped 6H-SiC and theoretical calculation

Huang Yi-Hua Jiang Dong-Liang Zhang Hui Chen Zhong-Ming Huang Zheng-Ren

Citation:

Ferromagnetism of Al-doped 6H-SiC and theoretical calculation

Huang Yi-Hua, Jiang Dong-Liang, Zhang Hui, Chen Zhong-Ming, Huang Zheng-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • SiC with d0 ferromagnetism is thought to be one of the most important materials in the spintronics field, and it has received widespread attention. In this paper, Al: SiC magnetic powder is fabricated by high temperature calcination method with the protection of Ar gas. X-ray diffraction results show that the obtained powder is of 6H-SiC phase, and Al is proposed to enter into the 6H-SiC crystalline. Raman results show that Ar gas plays a crucial role in impeding the SiC from decomposing at high temperature. With the protection of Ar gas, it maintains round shape after calcination about 2200℃, no any other peakis detected in the Raman spectrum. Without the protection of Ar gas, SiC particle would decompose into graphite, and the instinct peak of graphite is detected in the Raman spectrum. Energy dispersive spectrometer results show that there is 0.96 at% Al in the powder. The obtained powder shows magnificent magnetic hysteresis loop and large coercive force. Its saturation magnetic moment reaches 0.07 emu/g after calcination at 1800℃. Its coercive force reaches a maximum after calcination at 2000℃, while the saturation magnetic moment is 0.012 emu/g. With the rise of calcination temperature, the magnetism of the powder changes from diamagnetism to ferromagnetism. But when the calcination temperature rises to 2200℃ or more, it would change back to diamagnetism. The phenomenon of ferromagnetism disappearing is similar to that in ZnO as reported. The total quantity of magnetic impurities(Fe, Co, Ni) is evaluated to be less than 5 ppm. Saturation magnetic moments arising from these impurities can be calculated to be less than 10-5 emu/g according to the reported results, which is impossible to affect the accuracy in the experiment. Thus it is proposed that the ferromagnetism originates from the doping of Al in SiC powder. To understand the origin of the observed magnetism, we carry out first principles calculations based on spin polarized density functional theory. All the calculations are performed by using the generalized gradient approximation in the form of the Perdew-Burke-Ernzerhof function, which is implemented in the Viemma ab initio simulation package. A supercell consisting of 331 unit cells of 6H-SiC containing one AlSi-VSi, corresponding to a defect concentration of 0.93 at%, is built for calculations. The origin of its ferromagnetism is studied, and its spin situation in the space is mapped. The results show that the combination of Al and vacancy leads to a local magnetic moment of 1.0 B, and magnetic coupling is steady in the c axis direction. It is found that the p electron of carbon is the origin of the net spin.
      Corresponding author: Huang Yi-Hua, wyu@mail.sic.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51572276), the Special Project of Supercomputing Science of Joint Fund of the National Natural Science Foundation of China and Guangdong Province, and the State Key Laboratory of High Performance Ceramics and Superfine Microstructure, China(Grant No. Y12ZC4120G).
    [1]

    Coey J 2005 Solid State Sci. 7 660

    [2]

    Coey J, Venkatesan M, Fitzgerald C 2005 Nat. Mater. 4 173

    [3]

    Coey J, Venkatesan M, Fitzgerald C, Douvalis A, Sanders I 2002 Nature 420 156

    [4]

    Venkatesan M, Fitzgerald C, Coey J 2004 Nature 430 630

    [5]

    Garcia M A, Merino J M, Pinel E F, Quesada A, de la Venta J, Gonzalez M L R 2007 Nano. Lett. 7 1489

    [6]

    Ando K 2006 Science 312 1883

    [7]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X 2011 Phys. Rev. Lett. 106 087205

    [8]

    Li L, Hua W, Prucnal S, Yao S D, Shao L, Potzger K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B:Beam Interact. Mater. Atoms 275 33

    [9]

    Wang Y T, Liu Y, Wendler E, Hubner R, Anwand W, Wang G 2015 Phys. Rev. B 92 11

    [10]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J 2009 J. Am. Chem. Soc. 131 1376

    [11]

    Cheng W, Liu G Q, Zhang F S, Zhou H Y 2012 Phys. Lett. A 376 3363

    [12]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 3

    [13]

    Zheng H W, Yan Y L, L Z C, Yang S W, Li X G, Liu J D 2013 Appl. Phys. Lett. 102 4

    [14]

    Li Q, Xu J P, Liu J D, Ye B J 2016 Mater. Res. Express 3 056103

    [15]

    Qin S, Guo X T, Cao Y Q, Ni Z H, Xu Q Y 2014 Carbon 78 559

    [16]

    Panigrahy B, Aslam M, Misra D S, Ghosh M, Bahadur D 2010 Adv. Funct. Mater. 20 1161

    [17]

    Grace P J, Venkatesan M, Alaria J, Coey J, Kopnov G, Naaman R 2009 Adv. Mater. 21 71

    [18]

    Lin X L, Pan F C 2014 J. Supercond. Nov. Magn. 27 1513

    [19]

    Wang Y T, Liu Y, Wang G, Anwand W, Jenkins C A, Arenholz E 2015 Sci. Rep. 5 8999

  • [1]

    Coey J 2005 Solid State Sci. 7 660

    [2]

    Coey J, Venkatesan M, Fitzgerald C 2005 Nat. Mater. 4 173

    [3]

    Coey J, Venkatesan M, Fitzgerald C, Douvalis A, Sanders I 2002 Nature 420 156

    [4]

    Venkatesan M, Fitzgerald C, Coey J 2004 Nature 430 630

    [5]

    Garcia M A, Merino J M, Pinel E F, Quesada A, de la Venta J, Gonzalez M L R 2007 Nano. Lett. 7 1489

    [6]

    Ando K 2006 Science 312 1883

    [7]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X 2011 Phys. Rev. Lett. 106 087205

    [8]

    Li L, Hua W, Prucnal S, Yao S D, Shao L, Potzger K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B:Beam Interact. Mater. Atoms 275 33

    [9]

    Wang Y T, Liu Y, Wendler E, Hubner R, Anwand W, Wang G 2015 Phys. Rev. B 92 11

    [10]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J 2009 J. Am. Chem. Soc. 131 1376

    [11]

    Cheng W, Liu G Q, Zhang F S, Zhou H Y 2012 Phys. Lett. A 376 3363

    [12]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 3

    [13]

    Zheng H W, Yan Y L, L Z C, Yang S W, Li X G, Liu J D 2013 Appl. Phys. Lett. 102 4

    [14]

    Li Q, Xu J P, Liu J D, Ye B J 2016 Mater. Res. Express 3 056103

    [15]

    Qin S, Guo X T, Cao Y Q, Ni Z H, Xu Q Y 2014 Carbon 78 559

    [16]

    Panigrahy B, Aslam M, Misra D S, Ghosh M, Bahadur D 2010 Adv. Funct. Mater. 20 1161

    [17]

    Grace P J, Venkatesan M, Alaria J, Coey J, Kopnov G, Naaman R 2009 Adv. Mater. 21 71

    [18]

    Lin X L, Pan F C 2014 J. Supercond. Nov. Magn. 27 1513

    [19]

    Wang Y T, Liu Y, Wang G, Anwand W, Jenkins C A, Arenholz E 2015 Sci. Rep. 5 8999

  • [1] Liu Yuan-Feng, Li Bin-Cheng, Zhao Bin-Xing, Liu Hong. Detection of subsurface defects in silicon carbide bulk materials with photothermal radiometry. Acta Physica Sinica, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [2] Deng Xu-Liang, Ji Xian-Fei, Wang De-Jun, Huang Ling-Qin. First principle study on modulating of Schottky barrier at metal/4H-SiC interface by graphene intercalation. Acta Physica Sinica, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] Yu Zi-Heng, Ma Chun-Hong, Bai Shao-Xian. Effect of sharp edge of ring-groove-structures in SiC surface. Acta Physica Sinica, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [5] Yang Shuai, Tang Xiao-Yan, Zhang Yu-Ming, Song Qing-Wen, Zhang Yi-Men. Influence of charge imbalance on breakdown voltage of 4H-SiC semi-superjunction VDMOSFET. Acta Physica Sinica, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [6] Gao Shang-Peng, Zhu Tong. Quasiparticle band structure calculation for SiC using self-consistent GW method. Acta Physica Sinica, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [7] Song Kun, Chai Chang-Chun, Yang Yin-Tang, Zhang Xian-Jun, Chen Bin. Improvement in breakdown characteristics of 4H-SiC MESFET with a gate-drain surface epi-layer and optimization of the structure. Acta Physica Sinica, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [8] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [9] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [10] Zhang Yong, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Yang Yi-Tao. Study on nanohardness of helium-implanted 4H-SiC. Acta Physica Sinica, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [11] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] Liu Fu, Zhou Ji-Cheng, Tan Xiao-Chao. First-principles study on 3C-SiC(001)-(2×1)surface atomic structure and electronic structure. Acta Physica Sinica, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [13] Jin Hua, An Li-Nan, Bu Fan-Liang, Li Li-Hua, Wang Rong, Yang Wei-You, Zhang Li-Gong. Study of ultraviolet photoluminescence from SiC nanorods. Acta Physica Sinica, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [14] Huang Wei, Chen Zhi-Zhan, Chen Bo-Yuan, Zhang Jing-Yu, Yan Cheng-Feng, Xiao Bing, Shi Er-Wei. Effect of hydrofluoric acid etching time on Ni/6H-SiC contacts. Acta Physica Sinica, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. The study of optimal fitting parameter for C 1s spectra of SiC surface. Acta Physica Sinica, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] Ma Ge-Lin, Zhang Yu-Ming, Zhang Yi-Men, Ma Zhong-Fa. Study on the chemical states of the surface of SiC epilayer. Acta Physica Sinica, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] Gao Jin-Xia, Zhang Yi-Men, Tang Xiao-Yan, Zhang Yu-Ming. Extraction of channel carrier concentration using C-V method for SiC buried-channel MOSFET. Acta Physica Sinica, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] Xu Peng-Shou, Li Yong-Hua, Pan Hai-Bin. First principle study on β-SiC(001)-(2×1) surface structure. Acta Physica Sinica, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] Shang Ye-Chun, Liu Zhong-Li, Wang Shu-Rui. Study on the reverse characteristics of Ti/6H-SiC Schottky contacts. Acta Physica Sinica, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] Jiang Zhen-Yi, Xu Xiao-Hong, Wu Hai-Shun, Zhang Fu-Qiang, Jin Zhi-Hao. . Acta Physica Sinica, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
Metrics
  • Abstract views:  4886
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2016
  • Accepted Date:  29 September 2016
  • Published Online:  05 January 2017

/

返回文章
返回