Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Irradiation-induced modifications in the mechanical properties of borosilicate glass

Wang Tie-Shan Zhang Duo-Fei Chen Liang Lü Peng Du Xin Yuan Wei Yang Di

Citation:

Irradiation-induced modifications in the mechanical properties of borosilicate glass

Wang Tie-Shan, Zhang Duo-Fei, Chen Liang, Lü Peng, Du Xin, Yuan Wei, Yang Di
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Understanding the evolutions of the mechanical properties of borosilicate glasses under irradiation is crucial for evaluating their performances after long-term interaction with the irradiation environment in the disposal of high level nuclear waste.The variations of the mechanical properties of borosilicate glasses,induced by irradiation have been extensively studied.However,the mechanisms of variations in mechanical properties,induced by irradiation have not been clarified yet,especially when considering the effects of electronic and nuclear processes,respectively.To clarify this issue,a commercial borosilicate glass is investigated through an external irradiation of 5 MeV Xe ions and 1.2 MeV electrons in this paper.The nano-indentation test is used to study the changes of the hardness and modulus.The microstructure evolutions of Xe ion irradiated borosilicate glasses are characterized by Fourier transform infrared (FTIR) spectroscopy to discuss the mechanisms in the evolutions of mechanical properties.The nano-indentation results indicate that the hardness is reduced by 24%,and the modulus is lessened by 7.4% after the glass has been irradiated by Xe ions.Both the hardness and modulus variations reach their stable states when the total deposited energy is around 6.61021 keV/cm3.Although hardness and modulus are also observed to decrease by about 4.7% and 2.9%,resepectively, when the total deposited energy reaches approximately 1.41022 keV/cm3 after the glass has experienced the electron irradiation,the results still emphasize that the nuclear energy deposition is the major factor for the evolutions of the hardness and modulus of the borosilicate glass under ion irradiation.The decreases of hardness and modulus after the glass has experienced ion irradiation can be attributed to the deformation of glass network and volume expansion, which are induced by reducing the average ring size and transforming from[BO4] to[BO3] units.By considering the recovery resistance,it is found that the toughness of the borosilicate glass is significantly strengthened,and therefore the mechanical properties of the borosilicate glass are enhanced after the glass has been irradiated by Xe ions.Compared with the results after ion irradiation,the mechanical properties have negligible changes after electron irradiation.The present work is important for understanding both the irradiation effects on the hardness/modulus and the variations in the mechanical properties during the high level waste disposal.
      Corresponding author: Chen Liang, chenl@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11505084) and the Fundamental Research Fund for the Central Universities, China (Grant No. lzujbky-2016-37).
    [1]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky A, Price D L, Stoneham A M, Weinberg M C 1997 J. Mater. Res. 12 1946

    [2]

    Abbas A, Serruys Y, Ghaleb D, Delaye J M, Boizot B, Reynard B, Calas G 2000 Nucl. Instrum. Meth. B 166-167 445

    [3]

    Peuget S, Noel P Y, Loubet J L, Pavan S, Nivet P, Chenet A 2006 Nucl. Instrum. Meth. B 246 379

    [4]

    Peuget S, Cachia J N, Jégou C, Deschanels X, Roudil D, Broudic V, Delaye J M, Bart J M 2006 J. Nucl. Mater. 354 1

    [5]

    Peuget S, Delaye J M, Jégou C 2014 J. Nucl. Mater. 444 76

    [6]

    Deschanels X, Peuget S, Cachia J N, Charpentier T 2007 Prog. Nucl. Energy 49 623

    [7]

    Gedeon O, Lukeš J, Jurek K 2012 Nucl. Instrum. Meth. B 275 7

    [8]

    Chen L, Yuan W, Nan S, Du X, Zhang D F, Lv P, Peng H B, Wang T S 2016 Nucl. Instrum. Meth. B 370 42

    [9]

    Zhang T H, Yang Y M 2002 Adv. Mech. 32 349 (in Chinese)[张泰华, 杨业敏2002力学进展32 349]

    [10]

    Hu X J, Zheng B L, Yang B, Yu J G, He P F, Zhu Y F 2015 Acta Phys. Sin. 64 076201 (in Chinese)[胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰2015物理学报64 076201]

    [11]

    Battaglin G, Arnold G, Mattei W, Mazzoldi G, Dran P, Dran J C 1999 J. Appl. Phys. 85 8040

    [12]

    Bao Y W, Wang W, Zhou Y C 2004 Acta Mater. 52 5397

    [13]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [14]

    Sidorov T A 1967 J. Appl. Spectrosc. 7 258

    [15]

    Tenney A S, Wong J 1972 J. Chem. Phys. 56 5516

    [16]

    Steven A, Donald M, Schardt C R, Masiello D J, Simmons J H 2000 J. Non-Cryst. Solids 275 72

    [17]

    Cormier L, Meneses D D S, Neuville D R, Echegut P 2006 Phys. Chem. Glasses:Eur. J. Glass Sci. Technol. B 47 430

    [18]

    Yu J N 2007 Materal Radiation Effect (Beijing:Chemical Industry Press) p177(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第177页]

    [19]

    Nan J, John S 2002 J. Appl. Phys. 92 2310

    [20]

    Yang T F, Gao Y, Huang X J, Zhang Y W, Toulemonde M, Xue J M, Yan S, Wang Y G 2011 J. Non-Cryst. Solids 357 3245

    [21]

    Kieu L H, Kilymis D, Delaye J M, Peuget S 2014 Procedia Mater. Sci. 7 262

    [22]

    Chen L, Wang T S, Yang K J, Peng H B, Zhang G F, Zhang L M, Jiang H, Wang Q 2013 Nucl. Instrum. Meth. B 307 566

    [23]

    Bonfils J D, Peuget S, Panczer G, Ligny D D, Henry S, Noël P Y, Chenet A, Champagnon B 2010 J. Non-Cryst. Solids 356 388

    [24]

    Kilymis D A, Delaye J M 2014 J. Non-Cryst. Solids 401 147

    [25]

    Chen L, Zhang D F, Lv P, Zhang J D, Du X, Yuan W, Nan S, Zhu Z H, Wang T S 2016 J. Non-Cryst. Solids 448 6

    [26]

    Arnold G W 1986 Radiat. Eff. Defects Solids 98 55

    [27]

    Ewing R C, Weber W J, Clinard Jr F W 1995 Prog. Nucl. Energy 29 63

  • [1]

    Weber W J, Ewing R C, Angell C A, Arnold G W, Cormack A N, Delaye J M, Griscom D L, Hobbs L W, Navrotsky A, Price D L, Stoneham A M, Weinberg M C 1997 J. Mater. Res. 12 1946

    [2]

    Abbas A, Serruys Y, Ghaleb D, Delaye J M, Boizot B, Reynard B, Calas G 2000 Nucl. Instrum. Meth. B 166-167 445

    [3]

    Peuget S, Noel P Y, Loubet J L, Pavan S, Nivet P, Chenet A 2006 Nucl. Instrum. Meth. B 246 379

    [4]

    Peuget S, Cachia J N, Jégou C, Deschanels X, Roudil D, Broudic V, Delaye J M, Bart J M 2006 J. Nucl. Mater. 354 1

    [5]

    Peuget S, Delaye J M, Jégou C 2014 J. Nucl. Mater. 444 76

    [6]

    Deschanels X, Peuget S, Cachia J N, Charpentier T 2007 Prog. Nucl. Energy 49 623

    [7]

    Gedeon O, Lukeš J, Jurek K 2012 Nucl. Instrum. Meth. B 275 7

    [8]

    Chen L, Yuan W, Nan S, Du X, Zhang D F, Lv P, Peng H B, Wang T S 2016 Nucl. Instrum. Meth. B 370 42

    [9]

    Zhang T H, Yang Y M 2002 Adv. Mech. 32 349 (in Chinese)[张泰华, 杨业敏2002力学进展32 349]

    [10]

    Hu X J, Zheng B L, Yang B, Yu J G, He P F, Zhu Y F 2015 Acta Phys. Sin. 64 076201 (in Chinese)[胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰2015物理学报64 076201]

    [11]

    Battaglin G, Arnold G, Mattei W, Mazzoldi G, Dran P, Dran J C 1999 J. Appl. Phys. 85 8040

    [12]

    Bao Y W, Wang W, Zhou Y C 2004 Acta Mater. 52 5397

    [13]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [14]

    Sidorov T A 1967 J. Appl. Spectrosc. 7 258

    [15]

    Tenney A S, Wong J 1972 J. Chem. Phys. 56 5516

    [16]

    Steven A, Donald M, Schardt C R, Masiello D J, Simmons J H 2000 J. Non-Cryst. Solids 275 72

    [17]

    Cormier L, Meneses D D S, Neuville D R, Echegut P 2006 Phys. Chem. Glasses:Eur. J. Glass Sci. Technol. B 47 430

    [18]

    Yu J N 2007 Materal Radiation Effect (Beijing:Chemical Industry Press) p177(in Chinese)[郁金南2007材料辐照效应(北京:化学工业出版社)第177页]

    [19]

    Nan J, John S 2002 J. Appl. Phys. 92 2310

    [20]

    Yang T F, Gao Y, Huang X J, Zhang Y W, Toulemonde M, Xue J M, Yan S, Wang Y G 2011 J. Non-Cryst. Solids 357 3245

    [21]

    Kieu L H, Kilymis D, Delaye J M, Peuget S 2014 Procedia Mater. Sci. 7 262

    [22]

    Chen L, Wang T S, Yang K J, Peng H B, Zhang G F, Zhang L M, Jiang H, Wang Q 2013 Nucl. Instrum. Meth. B 307 566

    [23]

    Bonfils J D, Peuget S, Panczer G, Ligny D D, Henry S, Noël P Y, Chenet A, Champagnon B 2010 J. Non-Cryst. Solids 356 388

    [24]

    Kilymis D A, Delaye J M 2014 J. Non-Cryst. Solids 401 147

    [25]

    Chen L, Zhang D F, Lv P, Zhang J D, Du X, Yuan W, Nan S, Zhu Z H, Wang T S 2016 J. Non-Cryst. Solids 448 6

    [26]

    Arnold G W 1986 Radiat. Eff. Defects Solids 98 55

    [27]

    Ewing R C, Weber W J, Clinard Jr F W 1995 Prog. Nucl. Energy 29 63

  • [1] Zhao Po, Wang Jianqiang, Chen Meiqing, Yang Jinxue, Su Zhengxiong, Lu Chenyang, Liu Huajun, Hong Zhiyong, Gao Rui. Effect of doping phase on the evolution of He+ ion irradiation defects and superconductivity of EuBa2Cu3O7-δ strips. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240124
    [2] Cao Song, Yin Wen, Zhou Bin, Hu Zhi-Liang, Shen Fei, Yi Tian-Cheng, Wang Song-Lin, Liang Tian-Jiao. Calculation of radiation damage of key components of CSNS II target station. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240088
    [3] Wei Wen-Jing, Gao Xu-Dong, Lü Liang-Liang, Xu Nan-Nan, Li Gong-Ping. Simulation study of neutron radiation damage to cadmium zinc telluride. Acta Physica Sinica, 2022, 71(22): 226102. doi: 10.7498/aps.71.20221195
    [4] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Effect of interstitial ${\left\langle {100} \right\rangle }$ dislocation loop on expansion of micro-crack in body centered cubic iron investigated by molecular dynamics method. Acta Physica Sinica, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [5] He Ren, Li Ying-Ye, Chen Jing-Xin, Zhao Xue-Ling, Tang Huan, Zhang Li-Na, Shen Yan-Jiao, Li Feng, Yang Lin, Wei De-Yuan. Three-point and four-point mechanical bending test modeling and application in solar cells. Acta Physica Sinica, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [6] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [7] Ma Shuang, Wu Ren-Tu-Ya, O Tegus, Wu Xiao-Xia, Guan Peng-Fei, Bai Narsu. First principles study of mechanical properties of FeMnP1-xTx (T=Si, Ga, Ge) compounds. Acta Physica Sinica, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [8] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [9] Yao Bao-Dian, Hu Gui-Qing, Yu Zhi-Shui, Zhang Hui-Fen, Shi Li-Qun, Shen Hao, Wang Yue-Xia. Effect of H and He on the mechanical properties of Ti3SiC2: the first-principles calculation. Acta Physica Sinica, 2016, 65(2): 026202. doi: 10.7498/aps.65.026202
    [10] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [11] Xu Ling-Mao, Gao Chao, Dong Peng, Zhao Jian-Jiang, Ma Xiang-Yang, Yang De-Ren. Dislocation motion during rapid thermal processing of single-crystalline silicon wafers. Acta Physica Sinica, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [12] Jiang Shao-Ning, Wan Fa-Rong, Long Yi, Liu Chuan-Xin, Zhan Qian, Ohnuki Somei. Effects of helium and deuterium on irradiation damage in pure iron. Acta Physica Sinica, 2013, 62(16): 166801. doi: 10.7498/aps.62.166801
    [13] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [14] Zhu Yong, Li Bao-Hua, Xie Guo-Feng. Investigation of proton irradiation damage in BaTiO3 thin film by computer simulation. Acta Physica Sinica, 2012, 61(4): 046103. doi: 10.7498/aps.61.046103
    [15] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [16] Lan Mu-Jie, Wu Yi-Yong, Hu Jian-Min, He Shi-Yu, Yue Long, Xiao Jing-Dong, Yang De-Zhuang, Zhang Zhong-Wei, Wang Xun-Chun, Qian Yong, Chen Ming-Bo. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose. Acta Physica Sinica, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] He Xin-Fu, Yang Wen, Fan Sheng. Multi-scale modeling of radiation damage in FeCr alloy. Acta Physica Sinica, 2009, 58(12): 8657-8669. doi: 10.7498/aps.58.8657
    [19] Wang Hai-Yan, Zhu Wen-Jun, Song Zhen-Fei, Liu Shao-Jun, Chen Xiang-Rong, He Hong-Liang. The influence of helium bubble on the elastic properties of aluminum. Acta Physica Sinica, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [20] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
Metrics
  • Abstract views:  5067
  • PDF Downloads:  232
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2016
  • Accepted Date:  14 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回