Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O42H2O) and its characterization

Liang Wen Li Ze-Ming Wang Lu-Ying Chen Lin Li He-Ping

Citation:

High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O42H2O) and its characterization

Liang Wen, Li Ze-Ming, Wang Lu-Ying, Chen Lin, Li He-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Stimulated by the extensive application and research value, the study of anhydrous magnesium carbonate (MgCO3) has been a subject of great concern recently, so that a basic problem in designing a method of effectively synthesizing MgCO3 is very worth considering. In previous studies, different methods were reported to synthesize MgCO3 successfully but they still have some obvious deficiencies. The micro-particle sizes are too small to satisfy the basic requirements of micro-analysis. Thus, it is needed to explore the new methods of artificially synthesizing MgCO3 with the simple process and the high efficiency. By using magnesium oxalate dihydrate (MgC2O42H2O) as starting material, MgCO3 sample is successfully synthesized by a solid reaction under high temperature and high pressure for the first time in this work. The properties of as-synthesized sample are investigated by X-ray powder diffraction and Raman spectroscopy:neither of them shows any impurities existing in the sample. Significantly, the crystallinity quality is greatly improved in the terms of the maximum grain sizes up to 200 micrometers, which could provide a base for MgCO3 single crystal growth in the future. Moreover, compared with the results of previous studies, the reaction time of high pressure synthesis is controlled within 1 h so that the efficiency of the synthesis is greatly improved. Based on thermogravimetric analyses and the results of high pressure experiment under the various pressures and temperatures, the P-T phase diagrams of MgC2O42H2O-MgCO3-MgO at high pressures of 0.5, 1.0 and 1.5 GPa are obtained, and in this case, it is reasonable to explain the principle of MgCO3 synthesis under high pressure strictly. From the P-T diagram, high pressure can greatly improve the thermal stability of material, and the decomposition temperature of MgCO3 obviously increases with pressure increasing. However, due to decomposition temperature of MgCO3 increasing more quickly than that of MgCO42H2O, the stable phase regions of MgC2O42H2O and MgCO3 are separated from each other, and hence, the corresponding temperature and pressure can be controlled to decompose the phase of MgC2O42H2O while stabilizing the phase of MgCO3 so as to obtain MgCO3 successfully. Besides, by using polarizing microscope, the morphology of MgCO3 sample as well as its crystal cleavage plane (1011) is observed clearly, and it is noted that as-synthesized MgCO3 has good optical properties and high-quality crystallinity. The electron probing analysis for MgCO3 thin section is performed to quantify the Mg content and the calculation indicates that the sample composition is Mg0.99CO3.
      Corresponding author: Li He-Ping, liheping@vip.gyig.ac.cn
    • Funds: Project supported by the 135 Program of the Institute of Geochemistry, Chinese Academy of Sciences, the National Key Research and Development Plan of China (Grant No. 2016YFC0600100), and the Large-scale Scientific Apparatus Development Program, Chinese Academy of Sciences (Grant No. YZ200720).
    [1]

    Wang A, Pasteris J D, Meyer H O A, Dele-Duboi M L 1996 Earth Planetary Sci. Lett. 141 293

    [2]

    Freitag F, Kleinebudde P 2003 Eur. J. Pharmaceut. Sci. 19 281

    [3]

    Lou Z, Chen C, Chen Q 2005 J. Phys. Chem. B 109 10557

    [4]

    Qian J, McMurray C E, Mukhopadhyay D K, Wiggins J K, Vail M A, Bertagnolli K E 2012 Int. J. Refractory Metals Hard Mater. 31 71

    [5]

    Surface J A, Skemer P, Hayes S E, Conradi M S 2013 Environ. Sci. Technol. 47 119

    [6]

    de Leeuw N H, Parker S C 2000 J. Chem. Phys. 112 4326

    [7]

    Morgan A B, Cogen J M, Opperman R S, Harris J D 2007 Fire Mater. 31 387

    [8]

    Rigolo M, Woodhams R T 1992 Polymer Eng. Sci. 32 327

    [9]

    Berg G W 1986 Nature 324 50

    [10]

    Alt J C, Teagle D A H 1999 Geochim. Cosmochim. Acta 63 1527

    [11]

    Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Sobolev N V 1999 Nature 400 417

    [12]

    Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M 2004 Nature 427 60

    [13]

    Oganov A R, Ono S, Ma Y, Glass C W, Garcia A 2008 Earth Planetary Sci. Lett. 273 38

    [14]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H, Mao H, Hemley R J 2005 Nature 436 377

    [15]

    Lavina B, Dera P, Downs R T, Prakapenka V, Rivers M, Sutton S, Nicol M 2009 Geophys. Res. Lett. 36 L23306

    [16]

    Lavina B, Dera P, Downs R T, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D 2010 Phys. Rev. B 82 064110

    [17]

    Chai L, Navrotsky A 1993 Contribut. Mineral. Petrol. 114 139

    [18]

    Sandengen K, Jøsang L O, Baard K 2008 Ind. Eng. Chem. Res. 47 1002

    [19]

    Xing Z, Hao Q, Ju Z, Xu L, Qian Y 2010 Mater. Lett. 64 1401

    [20]

    Herman R G, Bogdan C E, Sommer A J, Simpson D R 1987 Appl. Spectrosc. 41 437

    [21]

    Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E 2010 Astrobiology 10 293

  • [1]

    Wang A, Pasteris J D, Meyer H O A, Dele-Duboi M L 1996 Earth Planetary Sci. Lett. 141 293

    [2]

    Freitag F, Kleinebudde P 2003 Eur. J. Pharmaceut. Sci. 19 281

    [3]

    Lou Z, Chen C, Chen Q 2005 J. Phys. Chem. B 109 10557

    [4]

    Qian J, McMurray C E, Mukhopadhyay D K, Wiggins J K, Vail M A, Bertagnolli K E 2012 Int. J. Refractory Metals Hard Mater. 31 71

    [5]

    Surface J A, Skemer P, Hayes S E, Conradi M S 2013 Environ. Sci. Technol. 47 119

    [6]

    de Leeuw N H, Parker S C 2000 J. Chem. Phys. 112 4326

    [7]

    Morgan A B, Cogen J M, Opperman R S, Harris J D 2007 Fire Mater. 31 387

    [8]

    Rigolo M, Woodhams R T 1992 Polymer Eng. Sci. 32 327

    [9]

    Berg G W 1986 Nature 324 50

    [10]

    Alt J C, Teagle D A H 1999 Geochim. Cosmochim. Acta 63 1527

    [11]

    Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Sobolev N V 1999 Nature 400 417

    [12]

    Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M 2004 Nature 427 60

    [13]

    Oganov A R, Ono S, Ma Y, Glass C W, Garcia A 2008 Earth Planetary Sci. Lett. 273 38

    [14]

    Lin J F, Struzhkin V V, Jacobsen S D, Hu M Y, Chow P, Kung J, Liu H, Mao H, Hemley R J 2005 Nature 436 377

    [15]

    Lavina B, Dera P, Downs R T, Prakapenka V, Rivers M, Sutton S, Nicol M 2009 Geophys. Res. Lett. 36 L23306

    [16]

    Lavina B, Dera P, Downs R T, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D 2010 Phys. Rev. B 82 064110

    [17]

    Chai L, Navrotsky A 1993 Contribut. Mineral. Petrol. 114 139

    [18]

    Sandengen K, Jøsang L O, Baard K 2008 Ind. Eng. Chem. Res. 47 1002

    [19]

    Xing Z, Hao Q, Ju Z, Xu L, Qian Y 2010 Mater. Lett. 64 1401

    [20]

    Herman R G, Bogdan C E, Sommer A J, Simpson D R 1987 Appl. Spectrosc. 41 437

    [21]

    Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E 2010 Astrobiology 10 293

  • [1] Chen Zhao-Liang, Lu Da-Biao, Ye Xu-Bin, Zhao Hao-Ting, Zhang Jie, Pan Zhao, Chi Zhen-Hua, Cui Tian, Shen Yao, Long You-Wen. High-pressure synthesized perovskite-type CeTaN2O and its magnetic and electrical properties. Acta Physica Sinica, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] Song Ting, Sun Xiao-Wei, Wei Xiao-Ping, Ouyang Yu-Hua, Zhang Chun-Lin, Guo Peng, Zhao Wei. High-pressure structure prediction and high-temperature structural stability of periclase. Acta Physica Sinica, 2019, 68(12): 126201. doi: 10.7498/aps.68.20190204
    [3] Li Yong, Wang Ying, Li Shang-Sheng, Li Zong-Bao, Luo Kai-Wu, Ran Mao-Wu, Song Mou-Sheng. Synthesis of diamond co-doped with B and S under high pressure and high temperature and electrical properties of the synthesized diamond. Acta Physica Sinica, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [4] Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen. High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure. Acta Physica Sinica, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [5] Xu Bo, Tian Yong-Jun. High pressure synthesis of nanotwinned ultrahard materials. Acta Physica Sinica, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [6] Liu Yin-Juan, He Duan-Wei, Wang Pei, Tang Ming-Jun, Xu Chao, Wang Wen-Dan, Liu Jin, Liu Guo-Duan, Kou Zi-Li. Syntheses and studies of superhard composites under high pressure. Acta Physica Sinica, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [7] Yin Yun-Yu, Wang Xiao, Deng Hong-Shan, Zhou Long, Dai Jian-Hong, Long You-Wen. High-pressure synthesis and special physical properties of several ordered perovskite structures. Acta Physica Sinica, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [8] Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An. Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions. Acta Physica Sinica, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [9] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [10] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [11] Hu Mei-Hua, Ma Hong-An, Yan Bing-Min, Zhang Zhuang-Fei, Li Yong, Zhou Zhen-Xiang, Qin Jie-Ming, Jia Xiao-Peng. Synthesis and growth mechanism of high length-diameter ratio strip-shape diamond by HPHT. Acta Physica Sinica, 2012, 61(7): 078102. doi: 10.7498/aps.61.078102
    [12] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [13] Wen Chao, Sun De-Yu, Li Xun, Guan Jin-Qing, Liu Xiao-Xin, Lin Ying-Rui, Tang Shi-Ying, Zhou Gang, Lin Jun-De, Jin Zhi-Hao. Nano-graphite synthesized by explosive detonation and its application in preparing diamond under high-pressure and high-temperature. Acta Physica Sinica, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [14] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
    [15] XIONG HAN, CHE GUANG-CAN, YAO YU-SHU, NI YONG-MING, DONG CHENG, JIA SHUN-LIAN. HIGH PRESSURE SYNTHESIS OF Ca DOPED (RPr)-123 SUPERCONDUCTORS. Acta Physica Sinica, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
    [16] XIONG YU-FENG, JIN DUO, YAO YU-SHU, WU FEI, JIA SHUN-LIAN, ZHAO ZHONG-XIAN. HIGH-PRESSURE SYNTHESIS AND SUPERCONDUCTIVITY OF NEW BULK Pr1-xCaxBa2Cu3O7-δSUPERCONDUCTORS. Acta Physica Sinica, 1998, 47(10): 1713-1719. doi: 10.7498/aps.47.1713
    [17] WANG WEN-KUI, HE SHOU-AN, LIU ZHI-YI, XU XIAO-PING, WANG SHOU-ZHENG, HUANG XIN-MING. HIGH PRESSURE SYNTHESIS OF La4Au METASTABLE SUPERCONDUCTING PHASE. Acta Physica Sinica, 1983, 32(12): 1618-1622. doi: 10.7498/aps.32.1618
    [18] ZHAO YU-LING, YAO YU-SHU, WANG WEN-KUI. HIGH-TEMPERATURE HIGH-PRESSURE SYNTHESIS OF PEROVSKITE-TYPE Pb(Zn1/3Nb2/3)O3. Acta Physica Sinica, 1978, 27(2): 224-225. doi: 10.7498/aps.27.224
    [19] XU JI-AN, ZHU ZAI-WAN. ESTIMATION OF THE CONDITIONS FOR SYNTHESIZING A15 TYPE Nb3Si AT HIGH PRESSURE. Acta Physica Sinica, 1976, 25(6): 533-535. doi: 10.7498/aps.25.533
    [20] SZECHUAN CUBIC BORON NITRIDE CO-OP. GROUP. THE SYNTHESIS OF CUBIC BORON NITRIDE UNDER HIGH PRESSURES AND TEMPERATURES. Acta Physica Sinica, 1976, 25(1): 1-9. doi: 10.7498/aps.25.1
Metrics
  • Abstract views:  5056
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  22 September 2016
  • Accepted Date:  11 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回