Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on incoherent scatter theory of high density dusty plasma

Xu Bin Li Hui Wang Zhan-Ge Xu Zheng-Wen Wu Jian

Citation:

Study on incoherent scatter theory of high density dusty plasma

Xu Bin, Li Hui, Wang Zhan-Ge, Xu Zheng-Wen, Wu Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Incoherent scatter radar is one of the most important detection instruments of the space plasma. But because of the low dust density in natural space plasma, the contribution of charged dust to incoherent scatter spectrum can be completely ignored, therefore the incoherent scattering theory has not appeared in dusty plasma. In the solid rocket plume, the propellant combustion can form a large number of nanometer- and micronmeter-sized dusty particles, and produce a high electron density from high temperature ionization, which makes considerable contributionto charged dusty particles with the high density. Therefore, we develop the incoherent scattering theory of dusty plasma in order to calculate the scattering characteristics of high density dusty plasma produced by rocket plume, for example. The theoretical model including electrons, ions and dusty particles is established by combining effects of charged dusty particles. The incoherent scatter spectral lines of ion resonance region and dust resonance regionare calculated. The effects of dusty particle radius, temperature and density on spectral line structure are discussed. With the increases of dusty particle radius and density, the amplitude of power spectrum increases. With the increase of dust temperature, the amplitude of power spectrum decreases. In the dust resonance region, the control mechanism of dust in spectrum is similar to that of the ions. With the increase of particle size (mass) and decrease of the temperature, the spectrum width narrows, and amplitude and area increase with the increase of density. But in the ion resonance region, the dust control mechanism is completely different, and the influence of the dust on ion line is in the way of attracting ions. So with the increase of dust density, ion line characteristics do not show that the area increases, and dust controls ions by adjusting the Debye radius or electrostatic shielding ball size. By comparing the ion lines with and without dust under the same parameters conditions, the amplitude of the ion line with dust is much larger than that without dust, and the resonance frequency of the ion line is greatly changed. With the dust particles of a relatively high density, one can enhance the ion line, hence the incoherent scattering phenomenon can be more easily observed in rocket plume. On the other hand, due to significant changes of frequency and amplitude in the ion line spectrum, the incoherent scattering inversion method based on the traditional theory will cause a large error in the inversion parameter, even a failure of parameter retrieval. The incoherent scattering theory and relevant physical laws of dusty plasma are presented, which are of great significance for establishing the incoherent scattering theory system and studying the rocket plume parameters.
      Corresponding author: Wang Zhan-Ge, xiaogezi2@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.41004065,41104108,61601419,11672068) and the National Key Laboratory of Electromagnetic Environment,China.
    [1]

    Gordon W E 1958 Proc. IRE 46 1824

    [2]

    Fejer J A 1960 Can. J. Phys. 38 1114

    [3]

    Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79

    [4]

    Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473

    [5]

    Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091

    [6]

    Salpeter E E 1960 Phys. Rev. 120 1528

    [7]

    Salpeter E E 1961 Phys. Rev. 122 1663

    [8]

    Hagfors T 1961 J. Geophys. Res. 66 1699

    [9]

    Evans J V 1969 Proc. IEEE 57 496

    [10]

    Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128

    [11]

    Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751

    [12]

    Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653

    [13]

    Suvanto K 1988 Radio Sci. 23 989

    [14]

    Suvanto K 1990 Plan. Space Sci. 38 903

    [15]

    Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82

    [16]

    Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 物理学报58 736]

    [17]

    Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112

    [18]

    Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335

    [19]

    Gustavsson B 2005 Ann. Geophys. 23 1747

    [20]

    Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857

    [21]

    Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492

    [22]

    Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]

    [23]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702

    [24]

    Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301

    [25]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540

    [26]

    Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117

    [27]

    Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601

  • [1]

    Gordon W E 1958 Proc. IRE 46 1824

    [2]

    Fejer J A 1960 Can. J. Phys. 38 1114

    [3]

    Dougherty J P, Farley D T 1960 Proc. Roy. Soc. London A 259 79

    [4]

    Dougherty J P, Farley D T 1963 J. Geophys. Res. 68 5473

    [5]

    Dougherty J P, Farley D T 1966 J. Geophys. Res. 71 4091

    [6]

    Salpeter E E 1960 Phys. Rev. 120 1528

    [7]

    Salpeter E E 1961 Phys. Rev. 122 1663

    [8]

    Hagfors T 1961 J. Geophys. Res. 66 1699

    [9]

    Evans J V 1969 Proc. IEEE 57 496

    [10]

    Sheffield J 1975 Plasma Scattering of Electromagnetic Radiation (New York:Academic Press) pp113-128

    [11]

    Raman R S, St-Maurice J P, Ong R S B 1981 J. Geophys. Res. 86 4751

    [12]

    Hubert D, Lathuillere C 1989 J. Geophys. Res. 94 3653

    [13]

    Suvanto K 1988 Radio Sci. 23 989

    [14]

    Suvanto K 1990 Plan. Space Sci. 38 903

    [15]

    Gurevich A V 1978 Nonlinear Phenomena in the Ionosphere (Berlin:Springer-Verlag) pp58-82

    [16]

    Xu B, Wu Z S, Wu J, Xue K 2009 Acta Phys. Sin. 58 736 (in Chinese)[徐彬, 吴振森, 吴健, 薛昆2009 物理学报58 736]

    [17]

    Xu B, Wu Z S, Wu J, Xue K 2009 Sci. China E 52 1112

    [18]

    Gurevich A V, Hagfors T, Carlson H, Lukyanov A V, Zybin K P 1998 Phy. Lett. A 246 335

    [19]

    Gustavsson B 2005 Ann. Geophys. 23 1747

    [20]

    Mishin E, Carlson H C, Hagfors T 2000 Geophys. Res. Lett. 27 2857

    [21]

    Xu B, Wang Z G, Xue K, Wu J, Wu Z S, Wu J, Yan Y B 2010 J. Atmos. Sol. Terr. Phys. 72 492

    [22]

    Shi Y X 2008 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[石雁祥 2008 博士学位论文(西安:西安电子科技大学)]

    [23]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Plasma 23 073702

    [24]

    Li H, Wu J, Zhou Z X, Yuan C X, Jia J S 2016 Phys. Plasma 23 073301

    [25]

    Li H, Wu J, Zhou Z X, Yuan C X 2016 Phys. Lett. A 380 2540

    [26]

    Li H, Wu J, Zhou Z X 2016 Ann. Geophys. 34 117

    [27]

    Rapp M, Lübken F J 2004 Atmos. Chem. Phys. 4 2601

  • [1] Lin Mai-Mai, Song Chen-Guang, Wang Ming-Yue, Chen Fu-Yan. Propagation characteristics of nonlinear dust acoustic solitary waves in complex plasma with nonthermal electrons and trapped ions. Acta Physica Sinica, 2024, 73(7): 075201. doi: 10.7498/aps.73.20231967
    [2] Tian Miao, Yao Ting-Yu, Cai Zhi-Min, Liu Fu-Cheng, He Ya-Feng. Three-Dimensional Numerical Simulation of Particle Separation Using a Dusty Plasma Ratchet. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240319
    [3] Lin Mai-Mai, Wang Ming-Yue, Jiang Lei. Propagating characteristics of nonlinear dust acoustic solitary waves in multicomponent dusty plasma. Acta Physica Sinica, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [4] Chen Wei, Huang Hai, Yang Li-Xia, Bo Yong, Huang Zhi-Xiang. Scattering characteristics of non-uniform dusty plasma targets based on Fokker-Planck-Landau collision model. Acta Physica Sinica, 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [5] Lin Mai-Mai, Fu Ying-Jie, Song Qiu-Ying, Yu Teng-Xuan, Wen Hui-Shan, Jiang Lei. Propagation characteristics of (2 + 1) dimensional dust acoustic solitary waves in hot dusty plasma. Acta Physica Sinica, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [6] Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li. Drift wave in strong collisional dusty magnetoplasma. Acta Physica Sinica, 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [7] Sun Jun-Chao, Zhang Zong-Guo, Dong Huan-He, Yang Hong-Wei. Fractional order model and Lump solution in dusty plasma. Acta Physica Sinica, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [8] Gong Wei-Hua, Zhang Yong-Liang, Feng Fan, Liu Fu-Cheng, He Ya-Feng. Complex motions of grains in dusty plasma with nonuniform magnetic field. Acta Physica Sinica, 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [9] Li Xue-Liang, Shi Yan-Xiang. Theoretical study on charging equation of dust plasmas in double Maxwellian distribution. Acta Physica Sinica, 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [10] Liu Jin-Yuan, Chen Long, Wang Feng, Wang Nan, Duan Ping. Characteristics of charging, motion and temperature of dust particulates in magnetic fusion devices. Acta Physica Sinica, 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [11] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [12] Shi Yan-Xiang, Wu Jian, Ge De-Biao. The research on the dielectric tensor of weakly ionized dust plasma. Acta Physica Sinica, 2009, 58(8): 5507-5512. doi: 10.7498/aps.58.5507
    [13] The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [14] Wang Hong-Yan, Duan Wen-Shan. Theoretical investigation of properties of soliton in hot dusty plasma with non-thermal ions. Acta Physica Sinica, 2007, 56(7): 3977-3983. doi: 10.7498/aps.56.3977
    [15] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [16] Xi Yan-Bin, Zhang Yu, Wang Xiao-Gang, Liu Yue, Yu Hong, Jiang Dong-Guang. Clean up of the dust grains in a plasma cylindrical reactor by a modulated magnetic field. Acta Physica Sinica, 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [17] Wu Jing, Zhang Peng-Yun, Song Qiao-Li, Zhang Jia-Liang, Wang De-Zhen. Investigation of void in dust clouds in reactive plasma. Acta Physica Sinica, 2005, 54(10): 4794-4798. doi: 10.7498/aps.54.4794
    [18] Wang Zheng-Xiong, Liu Jin-Yuan, Zou Xiu, Liu Yue, Wang Xiao-Gang. The Bohm criterion for the dusty plasma sheath. Acta Physica Sinica, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [19] Hou Lu-Jing, Wang You-Nian. Theoretical study on nonlinear resonances of a charged micro-particle in a RF sheath. Acta Physica Sinica, 2003, 52(2): 434-441. doi: 10.7498/aps.52.434
    [20] Hong Xue-Ren, Duan Wen-Shan, Sun Jian-An, Shi Yu-Ren, Lü Ke-Pu. The propagation of solitons in an inhomogeneous dusty plasma. Acta Physica Sinica, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
Metrics
  • Abstract views:  5000
  • PDF Downloads:  172
  • Cited By: 0
Publishing process
  • Received Date:  23 September 2016
  • Accepted Date:  28 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回