Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering

Guo Xu-Dong Tang Jun Liu Wen-Yao Guo Hao Fang Guo-Cheng Zhao Miao-Miao Wang Lei Xia Mei-Jing Liu Jun

Citation:

Application of cone-cylinder combined fiber probe to surface enhanced Raman scattering

Guo Xu-Dong, Tang Jun, Liu Wen-Yao, Guo Hao, Fang Guo-Cheng, Zhao Miao-Miao, Wang Lei, Xia Mei-Jing, Liu Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to increasingly severe environmental pollution, food safety and other problems, higher and higher requirements for the detecting technique of poisonous and harmful biochemical molecules have been put forward. The conventional biochemical detector has the disadvantages of large size, high cost and inability to realize far-end and in-situ detection functions. Based on the requirements of the biochemical molecular detection technology for high sensitivity, miniaturization, far-end detection, insitu detection, real-time analysis and the like, a detection method using a fiber surface-enhanced Raman scattering (SERS) probe to carry out Raman signal detection has been put forward in recent years. The detection method not only realizes far-end and insitu detection functions, but also has a relatively high sensitivity. In this paper, a taper and cylinder combination type fiber probe is made by adopting a simple tube corrosion method, Under the situation of fixed temperature, cone-cylinder combined fiber probes with different diameters are obtained by controlling the corrosion time, and silver nanoparticles are bound to the surface of a silanized silicon dioxide fiber probe through electrostatic forces. Then, the sizes and morphologies of silver nanoparticles on the surface of the fiber probe are observed under a scanning electron microscope. Besides, the detection limit of a rhodamine 6G (R6G) solution is used to manifest both the activity and the sensitivity of the fiber probe, and the self-assembly time of the silver nanoparticles are further optimized to be 30 min and the diameter of the fiber probe to be 62 upm. When the concentration of a silver sol solution is constant, a high-sensitivity fiber SERS probe can be prepared. Through far-end detection, the detection limit of the R6G can reach 10-14 mol/L, and the enhancement factor is 1.36104. This work can serve as an experimental basis for a novel fiber surface-enhanced Raman scattering sensor in such aspects as high sensitivity and low cost. The studies of this paper are expected to provide an appropriate detection technique for rapid quantitative detection of biochemical molecules, and further provide a reference for various application fields of environmental monitoring and food safety analysis in future in terms of realizing rapid and accurate in-situ detection. Therefore, the fiber SERS probe has large application foreground in molecular detection.
      Corresponding author: Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos.51225504,61571405),the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi,and the Natural Science Foundation of North University of China (Grant No.110248-28140).
    [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 物理学报 60 047807]

    [4]

    Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906

    [5]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [6]

    Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [7]

    Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107

    [8]

    Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607

    [9]

    Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28

    [10]

    Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522

    [11]

    Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056

    [12]

    Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92

    [13]

    Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064

    [14]

    Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155

    [15]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [16]

    Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114

    [17]

    Viets C, Hill W 2001 J. Mol. Struct. 563 163

    [18]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [19]

    Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256

    [20]

    Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13

    [21]

    Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356

    [22]

    Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408

    [23]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [24]

    Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491

    [25]

    Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391

    [26]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935

    [27]

    Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799

    [28]

    Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247

    [29]

    Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439

    [30]

    Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079

    [31]

    Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697

  • [1]

    Nie S, Emory S R 1997 Science 275 1102

    [2]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 物理学报 58 1980]

    [3]

    Li X L, Zhang Z D, Wang H Y, Xiong Z H, Zhang Z Y 2011 Acta Phys. Sin. 60 047807 (in Chinese)[李雪莲, 张志东, 王红艳, 熊祖洪, 张中月 2011 物理学报 60 047807]

    [4]

    Cao J, Zhao D, Lei X, Liu Y, Mao Q H 2014 Appl. Phys. Lett. 104 201906

    [5]

    Huang Q, Zhang X D, Ji W W, Wang J, Ni J, Li L N, Sun J, Geng W D, Geng X H, Xiong S Z, Zhao Y 2010 Acta Phys. Sin. 59 2753 (in Chinese)[黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖 2010 物理学报 59 2753]

    [6]

    Zhang Y, Gua C, Schwartzberg A M, Zhang J Z 2005 Appl. Phys. Lett. 87 123105

    [7]

    Shi C, Yan H, Gu C, Ghosh D, Seballos L, Chen S W, Zhang J Z, Chen B 2008 Appl. Phys. Lett. 92 103107

    [8]

    Liu Y, Huang Z L, Zhou F, Lei X, Yao B, Meng G W, Mao Q H 2016 Nanoscale 8 10607

    [9]

    Stokes D L, Vo-Dinh T 2000 Sensor. Actuat. B:Chem. 69 28

    [10]

    Polwart E, Keir R L, Davidson C M, Smith W E, Sadler D A 2000 Appl. Spectrosc. 54 522

    [11]

    Yap F L, Thoniyot P, Krishnan S, Krishnamoorthy S 2012 ACS Nano 6 2056

    [12]

    Viets C, Hill W 1998 Sensor. Actuat. B:Chem. 51 92

    [13]

    Ma X D, Huo H B, Wang W H, Tian Ye, Wu N, Guthy C, Shen M Y, Wang X W 2009 Sensors 10 11064

    [14]

    Jayawardhana S, Kostovski G, Mazzolini A P, Stoddart P R 2011 Appl. Opt. 50 155

    [15]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [16]

    Li M S, Yang C X 2010 Chin. Phys. Lett. 27 114

    [17]

    Viets C, Hill W 2001 J. Mol. Struct. 563 163

    [18]

    Fan Q F, Cao J, Liu Y, Yao B, Mao Q H 2013 Appl. Opt. 52 6163

    [19]

    Pesapane A, Lucotti A, Zerbi G 2009 J. Raman Spectrosc. 41 256

    [20]

    Foti A, Andrea C D, Bonaccorso F, Lanza M, Calogero G, Messina E, Marag O M, Fazio B 2013 Plasmonics 8 13

    [21]

    Lucotti A, Zerbi G 2007 Sensor. Actuat. B:Chem. 121 356

    [22]

    Yin Z, Geng Y F, Xie Q L, Hong X M, Tan X L, Chen Y Z, Wang L L, Wang W J, Li X J 2016 Appl. Opt. 55 5408

    [23]

    Zheng X L, Guo D W, Shao Y L, Jia S J, Xu S P, Zhao B, Xu W Q 2008 Langmuir 24 4394

    [24]

    Cao J, Zhao D, Mao Q H 2015 RSC Adv. 5 99491

    [25]

    Lee P C, Meisel D 1982 J. Phys. Chem. 17 3391

    [26]

    Hildebrandt P, Stockburger M 1984 J. Phys. Chem. Lett. 88 5935

    [27]

    Liu T, Zhou L, Zhang Z H, Xiao X S, Zhou M J, Yang C X 2014 Appl. Phys. B:Lasers O. 116 799

    [28]

    Huang Z L, Lei X, Liu Y, Wang Z W, Wang X J, Wang Z M, Mao Q H, Meng G W 2015 ACS Appl. Mater. Inter. 7 17247

    [29]

    Xie Z G, Tao J, Lu Y H, Lin K Q, Yan J, Wang P, Ming H 2009 Opt. Commun. 282 439

    [30]

    Etchegoin P G, Ru E C L 2008 Phys. Chem. Chem. Phys. 10 6079

    [31]

    Shim S, Stuart C M, Mathies R A 2008 ChemPhysChem 9 697

  • [1] He Xiao-Tian, Xu Jin-Liang, Cheng Yi-Wei. Measurements and identification of supercritical pseudo-boiling heat transfer modes based on fiber optic probes and multiscale entropy. Acta Physica Sinica, 2023, 72(5): 057801. doi: 10.7498/aps.72.20222060
    [2] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [3] Zhao Xing, Hao Qi, Ni Zhen-Hua, Qiu Teng. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis. Acta Physica Sinica, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [4] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [5] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [6] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [7] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [8] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [9] Sheng Zi-Cheng, Wang Teng, Zhou Gui-Yao, Xia Chang-Ming, Liu Jian-Tao, Li Bo-Yao, Fan Hai-Xia, Chen Yun, Hou Zhi-Yun. Raman probe based on hollow-core microstructured fiber. Acta Physica Sinica, 2018, 67(18): 184211. doi: 10.7498/aps.67.20180684
    [10] Yan Xue-Guo, Shen Yi, Pan Cong, Li Peng, Ding Zhi-Hua. Tapered structure based all-fiber probe for endoscopic optical coherence tomography. Acta Physica Sinica, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [11] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [12] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [13] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [14] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [15] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [16] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [17] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [18] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [20] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
Metrics
  • Abstract views:  5322
  • PDF Downloads:  225
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2016
  • Accepted Date:  29 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回