Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acoustic manipulation of particles by a resonant one-dimensional grating in air

Huang Xian-Yu Cai Fei-Yan Li Wen-Cheng Zheng Hai-Rong He Zhao-Jian Deng Ke Zhao He-Ping

Citation:

Acoustic manipulation of particles by a resonant one-dimensional grating in air

Huang Xian-Yu, Cai Fei-Yan, Li Wen-Cheng, Zheng Hai-Rong, He Zhao-Jian, Deng Ke, Zhao He-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is well known that acoustic wave carries momentum and energy. An object in a sound field, which absorbs or reflects sound energy, can be subjected to the acoustic radiation force (ARF), and thus can be manipulated in the contactless and noninvasive manners. This effect has potential applications in the fields of environment monitoring, microbiology, food quality control, etc. Obtaining a tunable trapping or pushing ARF should enable the design of an incident beam profile. However, the conventional acoustic manipulation system with plane wave, standing waves or Gaussian beams, which is usually generated directly by acoustic transducer, cannot be redesigned easily, nor can the corresponding ARF be modulated efficiently. Phononic crystals, which are artificial periodic structure materials, exhibit great advantages in modulating the propagation and distribution of acoustic wave compared with conventional materials, and thus have potential applications in tunable particle manipulation. Here, we present a theoretical study of the ARFs exerted on a cylindrical polystyrene foam particle near the surface of a one-dimensional (1D) grating in air. By using the finite element method (FEM) to investigate the transmission spectra and field distribution of the 1D grating and the FEM combined with momentum-flux tensor to obtain the ARF on the particle, we find that there are two resonance modes in the 1D grating, which origin from the coupling between the diffractive waves excited from the export of periodic apertures and the Fabry-Perot resonance mode inside the apertures. In addition, it can be seen from field distribution that in the first resonant mode, the resonance wavelength is approximate to the period of grating, and the enhanced spatial confinement of acoustic wave is located at the surface of the plate besides in the aperture. In the second resonant mode, the corresponding wavelength is more than twice the period of grating, and the enhanced spatial confinement of acoustic wave is mainly located in the aperture. Moreover, due to the gradient field distribution at the surface of slits and plate in these resonance modes, particles at the surface can be under the action of tunable negative ARFs. In the first resonance mode, the particle can be trapped on the surface of grating. While in the second resonance mode, the particle can be trapped in the aperture, and the amplitude of ARF of this mode is far smaller than that of the first mode. Thus, this system in the first resonance mode may have potential applications in air acoustic manipulation, aligning, and sorting micro-particles.
      Corresponding author: Cai Fei-Yan, fy.cai@siat.ac.cn;dengke@jsu.edu.cn ; Deng Ke, fy.cai@siat.ac.cn;dengke@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274008,11325420,11404363,11564012,11304119,11304351),the Shenzhen Basic Research Program,China (Grant No.JCYJ20150521094519482),the Natural Science Foundation of Hunan Province,China (Grant No.2016JJ2100),and the Natural Science Foundation of Education Department of Hunan Province,China (Grant No.16A170).
    [1]

    Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903

    [2]

    Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890

    [3]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653

    [4]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154

    [5]

    Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661

    [6]

    Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301

    [7]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302

    [8]

    Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301

    [10]

    Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501

    [11]

    Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150

    [12]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [13]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [14]

    Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504

    [15]

    Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502

    [16]

    Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109

    [17]

    Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102

    [18]

    Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505

    [19]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001

    [20]

    20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504

    [21]

    Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]

    [22]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301

    [23]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [24]

    Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617

    [25]

    Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003

    [26]

    Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302

  • [1]

    Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903

    [2]

    Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890

    [3]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653

    [4]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154

    [5]

    Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661

    [6]

    Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301

    [7]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302

    [8]

    Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301

    [10]

    Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501

    [11]

    Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150

    [12]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [13]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [14]

    Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504

    [15]

    Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502

    [16]

    Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109

    [17]

    Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102

    [18]

    Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505

    [19]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001

    [20]

    20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504

    [21]

    Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]

    [22]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301

    [23]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [24]

    Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617

    [25]

    Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003

    [26]

    Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302

  • [1] Wang Jun, Cai Fei-Yan, Zhang Ru-Jun, Li Yong-Chuan, Zhou Wei, Li Fei, Deng Ke, Zheng Hai-Rong. Acoustic manipulation of microparticles using a piezoelectric phononic crystal plate. Acta Physica Sinica, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [2] Wang Yan-Ping, Cai Fei-Yan, Li Fei, Zhang Ru-Jun, Li Yong-Chuan, Wang Jin-Ping, Zhang Xin, Zheng Hai-Rong. Acoustic manipulation of microparticles using a two-dimensional phononic crystal plate. Acta Physica Sinica, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [3] Pan Rui-Qi, Li Fan, Du Zhi-Wei, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Acoustic radiation force of elastic spherical shell with eccentric droplet in plane wave acoustic field. Acta Physica Sinica, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [4] Qi Shao-Fu, Cai Fei-Yan, Tian Zhen, Huang Xian-Yu, Zhou Juan, Wang Jin-Ping, Li Wen-Cheng, Zheng Hai-Rong, Deng Ke. Experimental investigation of multiple-particle pattern based on one-dimensional grating resonance field. Acta Physica Sinica, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [5] Chen Cong, Zhang Ruo-Qin, Li Feng, Li Zhi-Yuan. Experimental study on levitation control of particles and liquid droplets by vortex acoustic field enhanced by subwavelength pipe. Acta Physica Sinica, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [6] Zang Yu-Chen, Su Chang, Wu Peng-Fei, Lin Wei-Jun. Born approximation of acoustic radiation force and torque for an arbitrary particle in a zero-order standing Bessel beam. Acta Physica Sinica, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [7] Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei. Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams. Acta Physica Sinica, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [8] Zhu Ji-Lin, Gao Dong-Bao, Zeng Xin-Wu. In-plane manipulation of single particle based on phase-modulating acoustic tweezer. Acta Physica Sinica, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [9] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [10] Liang Bin, Yuan Ying, Cheng Jian-Chun. Recent advances in acoustic one-way manipulation. Acta Physica Sinica, 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [11] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [12] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [13] Cao Yong-Jun, Dong Chun-Hong, Zhou Pei-Qin. Transmission properties of one-dimensional qusi-periodical phononic crystal. Acta Physica Sinica, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [14] Zhang Bi-Xing, Wang Cheng-Hao, Bostr?m Anders. Study of SH acoustic radiation field excited by a piezoelectric strip. Acta Physica Sinica, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [15] WANG ZUO-QING. FOCUSING BEHAVIOURS OF THE DIFFRACTED BEAM OF SURFACE ACOUSTIC WAVE ON CHIRPED GRATING IN BRAGG REGIME. Acta Physica Sinica, 1988, 37(3): 388-395. doi: 10.7498/aps.37.388
    [16] WANG ZUO-QING, WANG CHENG-HAO, ZHOU SU-HUA. EXTRAORDINARY BRAGG DIFFRACTION OF SURFACE ACOUSTIC WAVE ON ACOUSTIC GRATING. Acta Physica Sinica, 1988, 37(3): 379-387. doi: 10.7498/aps.37.379
    [17] WANG ZOU-QING, ZHOU SU-HUA, WANG CHENG-HAO. ON THE BRAGG-DIFFRACTION OF SURFACE ACOUSTIC WAVES BY ACOUSTIC GRATING. Acta Physica Sinica, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
    [18] YANG ZHEN-QING, CHANG SHU-REN. DYNAMICAL PROPERTIES OF ONE-DIMENSIONAL KINK-PHONON GAS. Acta Physica Sinica, 1982, 31(9): 1243-1249. doi: 10.7498/aps.31.1243
    [19] YANG ZHEN-QING. STATISTICAL THEORY OF A ONE-DIMENSIONAL INTERACTIVE KINK-PHONON GAS. Acta Physica Sinica, 1981, 30(3): 389-400. doi: 10.7498/aps.30.389
    [20] QIAN ZU-WEN. ON THE SCATTERING OF SOUND BY SOUND. Acta Physica Sinica, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
Metrics
  • Abstract views:  4998
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2016
  • Accepted Date:  22 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回