Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatio-temporal characteristics of microhollow cathode sustained discharge

He Shou-Jie Zhang Zhao Zhao Xue-Na Li Qing

Citation:

Spatio-temporal characteristics of microhollow cathode sustained discharge

He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro hollow cathode sustained discharge (MCSD) is simulated by using a fluid model, and the spatiotemoral characteristics of the electric potential, electron density, ion density and electric field are investigated. Results show that the MCSD acts in different modes at different times. The first stage is the Townsend discharge mode. The second is a transition mode from Townsend discharge mode to a hollow cathode effect mode, and the electron density, ion density and electric field near the cathode rise drastically, in which the MCSD is ignited initially. The third stage is the hollow cathode effect mode, and the MCSD forms generally. The last stage is stable discharge state. At the stable discharge stage, the electron density and the ion density each achieve 1015 cm-3 with a peak density located in the center of hollow cathode chamber. The value of electron density in the MCSD region is on the order of 1013 cm -3. The results also show that the micro-hollow cathode discharge (MHCD) contributes to the formation of MCSD, and the MCSD also facilitates the development of MHCD. In addition, the voltage on the second anode has important influence on the distributions of electric potential, electron density and electric field both inside the hollow cathode and outside the hollow cathode. Moreover, the influence on the MCSD is more apparent than the influence on the MHCD. With the increase of voltage on the second anode, the cathode sheath close to the first anode becomes more and more apparent. The second anode is necessary for the formation of micro-hollow cathode sustained discharge.
      Corresponding author: He Shou-Jie, heshouj@hbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11205046), the Natural Science Foundation of Hebei Province, China (Grant No. A2016201025), and the Science and Technology Research Projects of Colleges and Universities in Hebei Province, China (Grant No. YQ2013017).
    [1]

    Schoenbach K H, Moselhy M, Shi W, Bentley R 1996Appl.Phys.Lett. 68 13

    [2]

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011Acta Phys.Sin. 60 015201(in Chinese)[夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强2011物理学报60 015201]

    [3]

    Zhan L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013Acta Phys.Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明2013物理学报62 075201]

    [4]

    Becker K H, Schoenbach K H, Eden J G 2006J.Phys.D 39 R55

    [5]

    Schoenbach K H, Becker K 2016Eur.Phys.J.D 70 1

    [6]

    Ouyang J T, Zhang Y, Qin Y 2016High Voltage Engineering 42 673(in Chinese)[欧阳吉庭, 张宇, 秦宇2016高电压技术42 673]

    [7]

    Xia G Q, Mao G W, Chen M L, Sun A B 2010High Pow.Las.Part.Beam. 22 1145(in Chinese)[夏广庆, 毛根旺, 陈茂林, 孙安邦2010强激光与粒子束22 1145]

    [8]

    Stark R H, Schoenbach K H 1999J.Appl.Phys. 85 2075

    [9]

    Xia G Q, Nader S 2011Spectrosc.Spect.Anal. 31 21(in Chinese)[夏广庆, Nader S 2011光谱学与光谱分析31 21]

    [10]

    Wang Y D, Ouyang J T 2009Transactions of Beijing Institute of Technology 29 1014(in Chinese)[王跃东, 欧阳吉庭2009北京理工大学学报29 1014]

    [11]

    Mohamed A A H, Block R, Schoenbach K H 2001IEEE Trans.Plasma.Sci. 30 182

    [12]

    Park H I, Lee T I, Park K W, Baik H K, Lee S J, Song K M 2003Appl.Phys.Lett. 82 3191

    [13]

    Callegari T, Aubert X, Rousseau A, Boeuf J P, Pitchford L C 2010Eur.Phys.J.D 60 581

    [14]

    Shin J, Rahman M T 2011Appl.Phys.Express 4 096001

    [15]

    Sharmin, Sultana, Jichul, Shin 2014Chin.Phys.Lett. 31 095203

    [16]

    Yao X L, Wang X B, Zou L N, Lu H 2003Laser Journal 24 21(in Chinese)[姚细林, 王新兵, 周俐娜, 卢宏2003激光杂志24 21]

    [17]

    Makasheva K, Muoz Serrano E, Hagelaar G, Pitchford L C 2007Plasma Phys.Controlled Fusion 49 B233

    [18]

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014Acta Phys.Sin. 63 095206(in Chinese)[付洋洋, 罗海云, 邹晓兵, 王强, 王新新2014物理学报63 095206]

    [19]

    Fu Y Y, Luo H Y, Zou X B, Wang X X 2014Chin.Phys.Lett.31 075201

    [20]

    He S, Jing H, Liu S, Ouyang J T 2013Phys.Plasmas 20 123504

    [21]

    Bogaerts A, Gijbels R 1995J.Appl.Phys. 78 6427

    [22]

    Hagelaar G J, de Hoog F J, Kroesen G M 2000Phys.Rev.E 62 1452

    [23]

    Ouyang J, He F, Miao J, Wang J 2007J.Appl.Phys. 101 043303

    [24]

    Rubin B, Williams J D 2008J.Appl.Phys. 104 053302

    [25]

    Choi P, Chuaqui H, Favre M, Colas V 1995IEEE Trans.Plasma Sci. 23 221

  • [1]

    Schoenbach K H, Moselhy M, Shi W, Bentley R 1996Appl.Phys.Lett. 68 13

    [2]

    Xia G Q, Xue W H, Chen M L, Zhu Y, Zhu G Q 2011Acta Phys.Sin. 60 015201(in Chinese)[夏广庆, 薛伟华, 陈茂林, 朱雨, 朱国强2011物理学报60 015201]

    [3]

    Zhan L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013Acta Phys.Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明2013物理学报62 075201]

    [4]

    Becker K H, Schoenbach K H, Eden J G 2006J.Phys.D 39 R55

    [5]

    Schoenbach K H, Becker K 2016Eur.Phys.J.D 70 1

    [6]

    Ouyang J T, Zhang Y, Qin Y 2016High Voltage Engineering 42 673(in Chinese)[欧阳吉庭, 张宇, 秦宇2016高电压技术42 673]

    [7]

    Xia G Q, Mao G W, Chen M L, Sun A B 2010High Pow.Las.Part.Beam. 22 1145(in Chinese)[夏广庆, 毛根旺, 陈茂林, 孙安邦2010强激光与粒子束22 1145]

    [8]

    Stark R H, Schoenbach K H 1999J.Appl.Phys. 85 2075

    [9]

    Xia G Q, Nader S 2011Spectrosc.Spect.Anal. 31 21(in Chinese)[夏广庆, Nader S 2011光谱学与光谱分析31 21]

    [10]

    Wang Y D, Ouyang J T 2009Transactions of Beijing Institute of Technology 29 1014(in Chinese)[王跃东, 欧阳吉庭2009北京理工大学学报29 1014]

    [11]

    Mohamed A A H, Block R, Schoenbach K H 2001IEEE Trans.Plasma.Sci. 30 182

    [12]

    Park H I, Lee T I, Park K W, Baik H K, Lee S J, Song K M 2003Appl.Phys.Lett. 82 3191

    [13]

    Callegari T, Aubert X, Rousseau A, Boeuf J P, Pitchford L C 2010Eur.Phys.J.D 60 581

    [14]

    Shin J, Rahman M T 2011Appl.Phys.Express 4 096001

    [15]

    Sharmin, Sultana, Jichul, Shin 2014Chin.Phys.Lett. 31 095203

    [16]

    Yao X L, Wang X B, Zou L N, Lu H 2003Laser Journal 24 21(in Chinese)[姚细林, 王新兵, 周俐娜, 卢宏2003激光杂志24 21]

    [17]

    Makasheva K, Muoz Serrano E, Hagelaar G, Pitchford L C 2007Plasma Phys.Controlled Fusion 49 B233

    [18]

    Fu Y Y, Luo H Y, Zou X B, Wang Q, Wang X X 2014Acta Phys.Sin. 63 095206(in Chinese)[付洋洋, 罗海云, 邹晓兵, 王强, 王新新2014物理学报63 095206]

    [19]

    Fu Y Y, Luo H Y, Zou X B, Wang X X 2014Chin.Phys.Lett.31 075201

    [20]

    He S, Jing H, Liu S, Ouyang J T 2013Phys.Plasmas 20 123504

    [21]

    Bogaerts A, Gijbels R 1995J.Appl.Phys. 78 6427

    [22]

    Hagelaar G J, de Hoog F J, Kroesen G M 2000Phys.Rev.E 62 1452

    [23]

    Ouyang J, He F, Miao J, Wang J 2007J.Appl.Phys. 101 043303

    [24]

    Rubin B, Williams J D 2008J.Appl.Phys. 104 053302

    [25]

    Choi P, Chuaqui H, Favre M, Colas V 1995IEEE Trans.Plasma Sci. 23 221

  • [1] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] Wang Qian, Fan Yuan-Yuan, Zhao Jiang-Shan, Liu Bin, Qi Yan, Yan Bo-Xia, Wang Yan-Wei, Zhou Mi, Han Zhe, Cui Hui-Rong. Analysis of preionization effect of excimer laser. Acta Physica Sinica, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [3] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [4] Feng Bo-Wen, Wang Ruo-Yu, Ma Yu-Peng-Xue, Zhong Xiao-Xia. Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure. Acta Physica Sinica, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [5] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [6] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [8] Yang Da-Peng, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing. Temperature and electron density in femtosecond filament-induced Cu plasma. Acta Physica Sinica, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [11] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [12] He Shou-Jie, Ha Jing, Liu Zhi-Qiang, Ouyang Ji-Ting, He Feng. Simulation of hollow cathode discharge by combining the fluid model with a transport model for metastable Ar atoms. Acta Physica Sinica, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [13] Han Ming-Jun, Ke Dao-Ming, Chi Xiao-Li, Wang Min, Wang Bao-Tong. A 2D semi-analytical model for the potential distribution of ultra-short channel MOSFET. Acta Physica Sinica, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [14] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [15] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [17] Ji Yun-Jing, Bian Bao-Min, Tong Chao-Xia, Lu Jian. Study on the electrical potential signals induced by laser plasma in the target with bias-voltage. Acta Physica Sinica, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [18] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] Liu Cheng Sen, Wang De Zhen. Plasma source ion implantation near the end of a cylindrical bore using an auxiliary electrode for finite rise time voltage pulses. Acta Physica Sinica, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] Fu Xi-Quan, Liu Cheng-Yi, Guo Hong. . Acta Physica Sinica, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
Metrics
  • Abstract views:  5089
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2016
  • Accepted Date:  05 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回