Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier

Cao Jian-Qiu Liu Wen-Bo Chen Jin-Bao Lu Qi-Sheng

Citation:

Modeling the single-mode thermally guiding very-large-mode-area Yb-doped fiber amplifier

Cao Jian-Qiu, Liu Wen-Bo, Chen Jin-Bao, Lu Qi-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The very-large-mode-area (VLMA) fiber is of great importance for suppressing the nonlinear effects which are considered as main limitations to the power scaling-up of high-power fiber lasers and amplifiers. The thermally guiding (TG) VLMA fiber is a novel VLMA fiber, the waveguide of which is formed by the thermal lens effect. Then, a low numerical aperture can be realized, which is promising to achieve the expanding of mode area with a high-quality beam. In order to study the performance of TG VLMA fiber in a fiber amplifier, we present a rate-equation model of the single-mode ytterbium-doped TG VLMA fiber amplifier, which consists of the steady-state rate equations and thermal transferring equations. With this model, the forward-pumped single-mode TG VLMA fiber amplifier is numerically studied. It is found that the diameter of fundamental mode field rises with the increase of the signal power, which shows the superiority of the TG VLMA fiber in suppressing the nonlinear effect in the fiber amplifier. The optimum fiber length and pertinent physical mechanism are also investigated. It is revealed the optimum fiber length is related to the input pump power, and it decreases with the increase of input pump power. However, when the input pump power is large enough, such a variation of optimum fiber length will become weakened. The numerical results also illuminate that the thermal load at the optimum length of TG VLMA fiber should not change too much with the input pump power. Moreover, the mode of output optical field is also discussed. It is found that the thermal load at the optimum length may not be large enough to realize a core-confined mode. In order to ensure that the core-confined mode can be output, the thermal load at the end of the fiber amplifier should be larger. It requires that the fiber length used in the amplifier should be shorter than the optimum fiber length, which will induce the decrease of the output signal power to some extent. In spite of that, the numerical results reveal that the decrease of output signal power should not be much, and the pertinent slope efficiency is not obviously lowered, either. Thus, it is verified that the core-confined mode with a VLMA can be obtained from the TG VLMA fiber amplifier with high slope efficiency. The pertinent results have significant guidance in the design of TG VLMA fiber amplifier.
      Corresponding author: Chen Jin-Bao, kdchenjinbao@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61405249).
    [1]

    Nilsson J, Payne D 2011 Science 332 921

    [2]

    Lou Q H, Zhou J, Zhu J Q, Wang Z J 2006 Infrared Laser Eng. 35 135 (in Chinese) [楼祺洪, 周军, 朱健强, 王之江 2006 红外与激光工程 35 135]

    [3]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 J. Sel. Top. Quantum Electron. 13 537

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [5]

    Tnnermann A, Schreiber T, Limpert J 2010 Appl. Opt. 49 71

    [6]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [7]

    Cao J, Guo S, Xu X, Chen J, Lu Q 2014 J. Sel. Top. Quantum Electron. 20 0903211

    [8]

    Liao S Y, Gong M L 2011 Infrared Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [9]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [10]

    Iizawa K, Varshney S K, Tsuchida Y, Saitoh K, Koshiba M 2008 Opt. Express 16 579

    [11]

    Limpert J, Schmidt O, Rothhardt J, Rser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [12]

    Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 689

    [13]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M, Foy P, Hawkins W, Ballato J 2006 Appl. Phys. Lett. 89 251101

    [14]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [15]

    Chen Y, McComb T, Sudesh V, Richardson M, Bass M 2007 Opt. Lett. 32 2505

    [16]

    Liu C H, Chang G, Litchinister N, Galvanauskas A, Guertin D, Jacobson N, Tankala K 2007 Optical Society of America, Advanced Solid-State Photonics Vancouver, Canada, January, 2007 pME2

    [17]

    Chen H W, Sosnowski T, Liu C H, Chen L J, Birge J R, Galvanauskas A, Krtner F X, Chang G 2010 Opt. Express 18 24699

    [18]

    Wong W S, X Peng, McLaughlin J M, Dong L 2005 Opt. Lett. 30 2855

    [19]

    Dong L, Li J, Peng X 2006 Opt. Express 14 11512

    [20]

    Dong L, Peng X, Li J 2007 J. Opt. Soc. Am. B 24 1689

    [21]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 1448

    [22]

    Jansen F, Stutzki F, Otto H, Jauregui C, Limper J, Tnnermann A 2013 Opt. Lett. 38 510

    [23]

    Kong L, Cao J, Guo S, Jiang Z, Lu Q 2016 Appl. Opt. 55 1183

    [24]

    Hardy A, Oron R 1997 J. Quantum Electron. 33 307

    [25]

    Kelson I, Hardy A 1998 J. Quantum Electron. 34 1570

    [26]

    Rosa L, Coscelli E, Poli F, Cucinotta A, Selleri S 2015 Opt. Express 23 18638

    [27]

    Brown D C, Hoffman H J 2001 J. Quantum Electron. 37 207

    [28]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [29]

    Coscelli E, Poli F, Thomas T A, Jrgensen M M, Leick L, Broeng J, Cucinotta A, Selleri S 2012 J. Lightwave Technology 30 3494

    [30]

    Paschotta R, Nilsson J, Tropper A, Hanna D 1997 J. Quantum Electron. 33 1049

  • [1]

    Nilsson J, Payne D 2011 Science 332 921

    [2]

    Lou Q H, Zhou J, Zhu J Q, Wang Z J 2006 Infrared Laser Eng. 35 135 (in Chinese) [楼祺洪, 周军, 朱健强, 王之江 2006 红外与激光工程 35 135]

    [3]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 J. Sel. Top. Quantum Electron. 13 537

    [4]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [5]

    Tnnermann A, Schreiber T, Limpert J 2010 Appl. Opt. 49 71

    [6]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2008 Opt. Express 16 13240

    [7]

    Cao J, Guo S, Xu X, Chen J, Lu Q 2014 J. Sel. Top. Quantum Electron. 20 0903211

    [8]

    Liao S Y, Gong M L 2011 Infrared Laser Eng. 40 455 (in Chinese) [廖素英, 巩马理 2011 红外与激光工程 40 455]

    [9]

    Tsuchida Y, Saitoh K, Koshiba M 2007 Opt. Express 15 1794

    [10]

    Iizawa K, Varshney S K, Tsuchida Y, Saitoh K, Koshiba M 2008 Opt. Express 16 579

    [11]

    Limpert J, Schmidt O, Rothhardt J, Rser F, Schreiber T, Tnnermann A, Ermeneux S, Yvernault P, Salin F 2006 Opt. Express 14 2715

    [12]

    Stutzki F, Jansen F, Eidam T, Steinmetz A, Jauregui C, Limpert J, Tnnermann A 2011 Opt. Lett. 36 689

    [13]

    Siegman A E, Chen Y, Sudesh V, Richardson M C, Bass M, Foy P, Hawkins W, Ballato J 2006 Appl. Phys. Lett. 89 251101

    [14]

    Siegman A E 2007 J. Opt. Soc. Am. B 24 1677

    [15]

    Chen Y, McComb T, Sudesh V, Richardson M, Bass M 2007 Opt. Lett. 32 2505

    [16]

    Liu C H, Chang G, Litchinister N, Galvanauskas A, Guertin D, Jacobson N, Tankala K 2007 Optical Society of America, Advanced Solid-State Photonics Vancouver, Canada, January, 2007 pME2

    [17]

    Chen H W, Sosnowski T, Liu C H, Chen L J, Birge J R, Galvanauskas A, Krtner F X, Chang G 2010 Opt. Express 18 24699

    [18]

    Wong W S, X Peng, McLaughlin J M, Dong L 2005 Opt. Lett. 30 2855

    [19]

    Dong L, Li J, Peng X 2006 Opt. Express 14 11512

    [20]

    Dong L, Peng X, Li J 2007 J. Opt. Soc. Am. B 24 1689

    [21]

    Jain D, Baskiotis C, Sahu J K 2013 Opt. Express 21 1448

    [22]

    Jansen F, Stutzki F, Otto H, Jauregui C, Limper J, Tnnermann A 2013 Opt. Lett. 38 510

    [23]

    Kong L, Cao J, Guo S, Jiang Z, Lu Q 2016 Appl. Opt. 55 1183

    [24]

    Hardy A, Oron R 1997 J. Quantum Electron. 33 307

    [25]

    Kelson I, Hardy A 1998 J. Quantum Electron. 34 1570

    [26]

    Rosa L, Coscelli E, Poli F, Cucinotta A, Selleri S 2015 Opt. Express 23 18638

    [27]

    Brown D C, Hoffman H J 2001 J. Quantum Electron. 37 207

    [28]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [29]

    Coscelli E, Poli F, Thomas T A, Jrgensen M M, Leick L, Broeng J, Cucinotta A, Selleri S 2012 J. Lightwave Technology 30 3494

    [30]

    Paschotta R, Nilsson J, Tropper A, Hanna D 1997 J. Quantum Electron. 33 1049

  • [1] Lin Xian-Feng, Zhang Zhi-Lun, Xing Ying-Bin, Chen Gui, Liao Lei, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. Near-single-mode 2-kW fiber amplifier based on M-type ytterbium-doped fiber. Acta Physica Sinica, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] Near-single-mode 2 kW fiber amplifier based on M-type ytterbium-doped fiber. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211751
    [3] Liu Heng, Zhang Jun-Xiang, Fu Shi-Jie, Sheng Quan, Shi Wei, Yao Jian-Quan. Upper-laser-level lifetime measurement of rear earth dopant in active fiber. Acta Physica Sinica, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [4] Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [5] Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei. Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [6] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [7] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [8] Dong Fan-Long, Ge Ting-Wu, Zhang Xue-Xia, Tan Qi-Rui, Wang Zhi-Yong. 300 W all-fiber amplifier with distributed side-coupled pump configuration. Acta Physica Sinica, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [9] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [10] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [11] Du Wen-Bo, Leng Jin-Yong, Zhu Jia-Jian, Zhou Pu, Xu Xiao-Jun, Shu Bo-Hong. Theoretical study of two-tone single frequency fiber amplifier with gain competition. Acta Physica Sinica, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [12] Xiao Hu, Leng Jin-Yong, Wu Wu-Ming, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu, Xu Xiao-Jun, Zhao Guo-Min. High efficiency tandem-pumped fiber amplifier. Acta Physica Sinica, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [13] Yang Ruo-Fu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors. Acta Physica Sinica, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [14] Ren Guang-Jun, Wei Zhen, Zhang Qiang, Yao Jian-Quan. Study of Nd3+-doped polarization maintaining fiber amplifier. Acta Physica Sinica, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [15] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [16] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [17] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] Ren Guang-Jun, Zhang Qiang, Wang Peng, Yao Jian-Quan. Study of Nd3+-doped polarization-maintaining fiber laser. Acta Physica Sinica, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [19] Xiao Rui, Hou Jing, Jiang Zong-Fu, Liu Ming. Experimental research of coherent combining of three fiber amplifiers. Acta Physica Sinica, 2006, 55(12): 6464-6469. doi: 10.7498/aps.55.6464
    [20] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
Metrics
  • Abstract views:  5032
  • PDF Downloads:  254
  • Cited By: 0
Publishing process
  • Received Date:  25 October 2016
  • Accepted Date:  08 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回