Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode

Qiao Jian-Liang Xu Yuan Gao You-Tang Niu Jun Chang Ben-Kang

Citation:

Quantum efficiency for reflection-mode varied doping negative-electron-affinity GaN photocathode

Qiao Jian-Liang, Xu Yuan, Gao You-Tang, Niu Jun, Chang Ben-Kang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a new kind of ultraviolet photocathode material, the negative-electron-affinity (NEA) GaN photocathode needs to further improve its photoemission performance and the stable performance in practical applications. Under the limit of GaN photocathode material growth level, how to further improve the quantum efficiency of cathode is an important problem. The varied doping technology can help to solve the problem under such circumstances. According to the photoemission mechanism of varying doping NEA GaN photocathode material, the built-in electric field formulas and the quantum efficiency formulas for reflection-mode varied doping NEA GaN photocathode are given. The preliminary structure of varied doping NEA GaN photocathode is designed. The varied doping material sample is divided into four layers according to the doping concentration. Using the self-developed experimental equipment, the varied doping GaN photocathode sample is activated with Cs/O. The activation process and the change characteristics of photocurrent for varied doping NEA GaN photocathode are discussed. At the beginning, the photocurrent is increased steady with the introduction of Cs, then the Cs kill phenomenon appears in the presence of excessive Cs. After the introduction of O, the photocurrent value starts to rise again. The spectral response of varied doping GaN photocathode is tested in situ after activation, and the quantum efficiency values ranging from 240 nm to 354 nm are obtained. On the basis of the obtained experimental results of quantum efficiency, combining to the typical quantum efficiency curve from University of California, the characteristics of quantum efficiency curves are analyzed. The results show that the quantum efficiency value for reflection-mode varied doping NEA GaN photocathode can reach 56% at 240 nm because of the built-in electric field, yet the quantum efficiency maximum value for uniform doping GaN photocathode is only 37% at 230 nm. The tested quantum efficiency maximum value of varied doping NEA GaN photocathode is improved much more than that of the uniform doping GaN photocathode. In a wider range of the incident light wavelength, the quantum efficiency of varied doping NEA GaN photocathode is relatively stable, and the excellent properties of varied doping GaN photocathode are confirmed. The reason why the value of quantum efficiency decreases with the increase of incident light wavelength is given. First, the photon energy decreases with the increase of incident light wavelength. Second, the incident light is absorbed from the front surface of cathode for reflection mode. In addition, the quantum efficiency curves of varied doping GaN photocathode show obvious sharp cut-off characteristics near the threshold, and the sharp cut-off characteristic is necessary for high detection sensitivity. The property of negative electron affinity for varied doping GaN cathode material after successful activation is also proved by the sharp cut-off feature.
      Corresponding author: Qiao Jian-Liang, qjlqsy@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61371058).
    [1]

    Yang Y F, Fu R G, Ma L, Wang X H, Zhang Y J 2012 Acta Phys. Sin. 61 128504 (in Chinese) [杨永富, 富容国, 马力, 王晓晖, 张益军 2012 物理学报 61 128504]

    [2]

    Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford University)

    [3]

    Wang X H, Shi F, Guo H, Hu C L, Cheng H C, Chang B K, Ren L, Du Y J, Zhang J J 2012 Chin. Phys. B 21 087901

    [4]

    Du X Q, Tian J, Zhou Q F 2011 Spectroscop. Spect. Anal. 31 1606 (in Chinese) [杜晓晴, 田健, 周强富 2011 光谱学与光谱分析 31 1606]

    [5]

    Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K, Qian Y S 2011 Chin. Phys. B 20 118501

    [6]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [7]

    Li B, Chang B K, Xu Y, Du X Q, Du Y J, Fu X Q, Wang X H, Zhang J J 2011 Spectroscop. Spect. Anal. 31 2036 (in Chinese) [李飙, 常本康, 徐源, 杜晓晴, 杜玉杰, 付小倩, 王晓晖, 张俊举 2011 光谱学与光谱分析 31 2036]

    [8]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectroscop. Spect. Anal. 29 3007 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 3007]

    [9]

    Yang Z, Chang B, Zou J, Qiao J, Gao P, Zeng Y, Li H 2007 Appl. Opt. 46 7035

    [10]

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]

    [11]

    Hao G H, Chang B K, Chen X L, Wang X H, Zhao J, Xu Y, Jin M C 2013 Acta Phys. Sin. 62 097901 (in Chinese) [郝广辉, 常本康, 陈鑫龙, 王晓晖, 赵静, 徐源, 金睦淳 2013 物理学报 62 097901]

    [12]

    Wang X H, Chang B K, Zhang Y J, Hou R L, Xiong Y J 2011 Spectroscop. Spect. Anal. 31 2655 (in Chinese) [王晓晖, 常本康, 张益军, 侯瑞丽, 熊雅娟 2011 光谱学与光谱分析 31 2655]

    [13]

    Li B 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李飙 2013 博士学位论文(南京: 南京理工大学)]

    [14]

    Wang X H 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王晓晖 2013 博士学位论文(南京: 南京理工大学)]

    [15]

    Siegmund O H W, Tremsin A S, Vallerga J V, McPhate J B, Hull J S, Malloy J, Dabiran A M 2008 Proc. SPIE 7021 70211B

    [16]

    Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Meth. Phys. Res. A 567 89

  • [1]

    Yang Y F, Fu R G, Ma L, Wang X H, Zhang Y J 2012 Acta Phys. Sin. 61 128504 (in Chinese) [杨永富, 富容国, 马力, 王晓晖, 张益军 2012 物理学报 61 128504]

    [2]

    Machuca F 2003 Ph. D. Dissertation (Stanford: Stanford University)

    [3]

    Wang X H, Shi F, Guo H, Hu C L, Cheng H C, Chang B K, Ren L, Du Y J, Zhang J J 2012 Chin. Phys. B 21 087901

    [4]

    Du X Q, Tian J, Zhou Q F 2011 Spectroscop. Spect. Anal. 31 1606 (in Chinese) [杜晓晴, 田健, 周强富 2011 光谱学与光谱分析 31 1606]

    [5]

    Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K, Qian Y S 2011 Chin. Phys. B 20 118501

    [6]

    Zhang Y J, Chang B K, Yang Z, Niu J, Zou J J 2009 Chin. Phys. B 18 4541

    [7]

    Li B, Chang B K, Xu Y, Du X Q, Du Y J, Fu X Q, Wang X H, Zhang J J 2011 Spectroscop. Spect. Anal. 31 2036 (in Chinese) [李飙, 常本康, 徐源, 杜晓晴, 杜玉杰, 付小倩, 王晓晖, 张俊举 2011 光谱学与光谱分析 31 2036]

    [8]

    Niu J, Qiao J L, Chang B K, Yang Z, Zhang Y J 2009 Spectroscop. Spect. Anal. 29 3007 (in Chinese) [牛军, 乔建良, 常本康, 杨智, 张益军 2009 光谱学与光谱分析 29 3007]

    [9]

    Yang Z, Chang B, Zou J, Qiao J, Gao P, Zeng Y, Li H 2007 Appl. Opt. 46 7035

    [10]

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]

    [11]

    Hao G H, Chang B K, Chen X L, Wang X H, Zhao J, Xu Y, Jin M C 2013 Acta Phys. Sin. 62 097901 (in Chinese) [郝广辉, 常本康, 陈鑫龙, 王晓晖, 赵静, 徐源, 金睦淳 2013 物理学报 62 097901]

    [12]

    Wang X H, Chang B K, Zhang Y J, Hou R L, Xiong Y J 2011 Spectroscop. Spect. Anal. 31 2655 (in Chinese) [王晓晖, 常本康, 张益军, 侯瑞丽, 熊雅娟 2011 光谱学与光谱分析 31 2655]

    [13]

    Li B 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [李飙 2013 博士学位论文(南京: 南京理工大学)]

    [14]

    Wang X H 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [王晓晖 2013 博士学位论文(南京: 南京理工大学)]

    [15]

    Siegmund O H W, Tremsin A S, Vallerga J V, McPhate J B, Hull J S, Malloy J, Dabiran A M 2008 Proc. SPIE 7021 70211B

    [16]

    Siegmund O, Vallerga J, McPhate J, Malloy J, Tremsin A, Martin A, Ulmer M, Wessels B 2006 Nucl. Instrum. Meth. Phys. Res. A 567 89

  • [1] Wang Guo-Jian, Liu Yan-Wen, Li Fen, Tian Hong, Zhu Hong, Li Yun, Zhao Heng-Bang, Wang Xiao-Xia, Zhang Zhi-Qiang. Effect of ion-beam surface treatment on photocathode emission. Acta Physica Sinica, 2021, 70(21): 218503. doi: 10.7498/aps.70.20210587
    [2] Li Qian-Qian, Hao Qiu-Yan, Li Ying, Liu Guo-Dong. Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Physica Sinica, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [3] Chen Xin-Long, Zhao Jing, Chang Ben-Kang, Xu Yuan, Zhang Yi-Jun, Jin Mu-Chun, Hao Guang-Hui. Comparison between exponential-doping reflection-mode GaAlAs and GaAs photocathodes. Acta Physica Sinica, 2013, 62(3): 037303. doi: 10.7498/aps.62.037303
    [4] Wang Du-Yang, Sun Hui-Qing, Xie Xiao-Yu, Zhang Pan-Jun. Theoretical study of luminance of GaN quantum dots planted in quantum well. Acta Physica Sinica, 2012, 61(22): 227303. doi: 10.7498/aps.61.227303
    [5] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [6] Zhang Yi-Jun, Niu Jun, Zhao Jing, Zou Ji-Jun, Chang Ben-Kang. Effect of exponential-doping structure on quantum yield of transmission-mode GaAs photocathodes. Acta Physica Sinica, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [7] Guo Xiang-Yang, Du Xiao-Qing, Chang Ben-Kang, Qiao Jian-Liang, Qian Yun-Sheng, Wang Xiao-Hui. Quantum efficiency recovery of reflection-mode NEA GaN photocathode. Acta Physica Sinica, 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [8] Zhang Yun-Yan, Fan Guan-Han. Theoretical study of GaN interval layers and quantum well barrier layers of different doping types in dual-wavelength LED. Acta Physica Sinica, 2011, 60(1): 018502. doi: 10.7498/aps.60.018502
    [9] Li Biao, Chang Ben-Kang, Xu Yuan, Du Xiao-Qing, Du Yu-Jie, Wang Xiao-Hui, Zhang Jun-Ju. Research and development of GaN photocathode. Acta Physica Sinica, 2011, 60(8): 088503. doi: 10.7498/aps.60.088503
    [10] Guo Xiang-Yang, Chang Ben-Kang, Wang Xiao-Hui, Zhang Yi-Jun, Yang Ming. Photoemission stability of negative electronaffinity GaN phtocathode. Acta Physica Sinica, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [11] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] Qiao Jian-Liang, Chang Ben-Kang, Du Xiao-Qing, Niu Jun, Zou Ji-Jun. Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [13] Deng Yi, Zhao De-Gang, Wu Liang-Liang, Liu Zong-Shun, Zhu Jian-Jun, Jiang De-Sheng, Zhang Shu-Ming, Liang Jun-Wu. Effects of AlGaN layer parameter on ultraviolet response of n+-GaN/i-AlxGa1-xN/n+-GaN structure ultraviolet-infrared photodetector. Acta Physica Sinica, 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [14] Qiao Jian-Liang, Tian Si, Chang Ben-Kang, Du Xiao-Qing, Gao Pin. Activation mechanism of negative electron affinity GaN photocathode. Acta Physica Sinica, 2009, 58(8): 5847-5851. doi: 10.7498/aps.58.5847
    [15] Niu Jun, Yang Zhi, Chang Ben-Kang, Qiao Jian-Liang, Zhang Yi-Jun. Study on the model of quantum efficiency of reflective varied doping GaAs photocathode. Acta Physica Sinica, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [16] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [17] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi. Theoretical calculation of quantum yield for exponential-doping GaAs photocathodes. Acta Physica Sinica, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] Shen Ye, Xing Huai-Zhong, Yu Jian-Guo, Lü Bin, Mao Hui-Bing, Wang Ji-Qing. Curie-temperature modulation by polarization-induced built-in electric fields in Mn δ-doped GaN/AlGaN quantum wells. Acta Physica Sinica, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] Li Pei-Xian, Hao Yue, Fan Long, Zhang Jin-Cheng, Zhang Jin-Feng, Zhang Xiao-Ju. AlGaN/GaN heterojunction wavefunction half analytic model based on quantum distu rbance. Acta Physica Sinica, 2003, 52(12): 2985-2988. doi: 10.7498/aps.52.2985
    [20] ZHANG DE-HENG, LIU YUN-YAN, ZHANG DE-JUN. THE UV PHOTOCONDUCTIVITY OF n-TYPE GaN FILMSDEPOSITED BY MOCVD. Acta Physica Sinica, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
Metrics
  • Abstract views:  4843
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  08 October 2016
  • Accepted Date:  23 November 2016
  • Published Online:  05 March 2017

/

返回文章
返回