Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films

Wang Min Liu Fu-Fei Zhou Xian Dai Yu-Tang Yang Ming-Hong

Citation:

Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films

Wang Min, Liu Fu-Fei, Zhou Xian, Dai Yu-Tang, Yang Ming-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Integration of novel functional material with fiber optic components is one of the new trends in the field of novel sensing technologies. The combination of fiber optics with functional materials offers great potential for realizing the novel sensors. Typically in optical fibre sensing technology, fibre itself acts as sensing element and also transmitting element, such as fiber Bragg grating (FBG), Brillouin or Raman optical time domain reflectometer. However such sensing components can only detect limited physical parameters such as temperature or strain based on the principle of characteristic wavelength drifts. While the idea of optical fiber sensing technology with functional materials is quite different from that of the traditional technology, functional materials can be employed as sensing components, therefore many parameters, including chemical or biological parameters, can be detected, depending on the designs of different sensing films. When compared with the common fiber sensing technologies such as FBG and optical time domain reflectometer, fiber optic sensors based on functional materials show advantages in the diversity of measurement parameters. However, functional materials can be realized by many techniques including e-beam evaporation, magnetron sputtering, spin-coating, electro-chemical plating, etc. The mechanical stability of tiny optical fibers is still problematic, which could be a challenge to industrial applications. In this work, a femtosecond laser fabricated fiber inline micro Mach-Zehnder interferometer with deposited palladium film for hydrogen sensing is presented. Simulation results show that the transmission spectrum of the interferometer is critically dependent on the microcavity length and the refractive index of Pd film, and a short microcavity length corresponds to a high sensitivity. The experimental results obtained in a wavelength region of 1200-1400 nm, and in a hydrogen concentration range of 0-16%, accord well with those of the simulations. The developed system has high potential in hydrogen sensing with high sensitivity. Three-dimensional multitrench microstructures, femtosecond laser ablated in fiber Bragg grating cladding, TbDyFe sputtering are proposed and demonstrated for magnetic field sensing probe. Parameters such as the number of straight microtrenches, translation speed (feed rate), and laser pulse power of laser beam have been systematically varied and optimized. A 5-m-thick giant Terfenol-D magnetostrictive film is sputtered onto FBG microtrenches, and acts as a magnetic sensing transducer. Eight microtrench samples produce the highest central wavelength shift of 120 pm, nearly fivefold more sensitive than nonmicrostructured standard FBG. An increase in laser pulse power to 20 mW generates a magnetic sensitivity of 0.58 pm/mT. Interestingly, reduction in translational speed contributes dramatically to the rise in the magnetic sensitivity of the sample. These sensor samples show magnetic response reversibility and have great potential in the magnetic field sensing domain. Furthermore hydrogen sensors based on fiber Bragg gratings micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film are proposed and demonstrated. The atomic ratio of the two metals is controlled at Pd:Ag=3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5~pm/%H for the same 4% hydrogen concentration. At an ambient temperature of 35℃, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.
      Corresponding author: Yang Ming-Hong, minghong.yang@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61290311, 61505150, 61575151), and Natural Science Foundation of Hubei Province, China (Grant Nos. 2014CFC1138, 2015CFA016).
    [1]

    Kao T W, Tayler H F 1996 Opt. Lett. 21 615

    [2]

    Rao Y J 2006 Opt. Fiber Technol. 12 227

    [3]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightw. Technol. 21 1320

    [4]

    Woolley A T, Marbles R A 1995 Anal. Chem. 67 3676

    [5]

    Qiu F, Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 94 152

    [6]

    Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 93 309

    [7]

    Ryzhikov A S, Shatokhin A N, Putilin F N, Rumyantseva M N, Gaskov A M, Labeau M 2005 Sensors Actuat. B:Chem. 107 387

    [8]

    Shukla S, Seal S, Ludwig L, Parish C 2004 Sensors Actuat. B:Chem. 97 256

    [9]

    Tan O K, Zhu W, Tse M S, Yao X 1999 Mater. Sci. Eng. B 58 221

    [10]

    Gong J W, Chen Q F, Fei W F, Seal S 2004 Sensors Actuat. B:Chem. 102 117

    [11]

    Yang M H, Dai J X 2012 Photon. Sensors 2 14

    [12]

    Yang M H, Dai J X, Zhou C M, Jiang D S 2009 Opt. Express 17 20777

    [13]

    Butler M A 1994 J. Electrochem. Soc. 138 L46

    [14]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [15]

    Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clment M 2000 Sensors Actuat. B:Chem. 67 57

    [16]

    Dikovska A O, Atanasov P A, Stoyanchov T R, Andreev A T, Karakoleva E I, Zafirova B S 2007 Appl. Opt. 46 2481

    [17]

    Kim K T, Song H S, Mah J P, Hong K B, Im K, Baik S J, Yoon Y I 2007 IEEE Sens. J. 7 1767

    [18]

    Dikovska A O, Atanasov P A, Andreev A T, Zafirova B S, Karakoleva E I, Stoyanchov T R 2007 Appl. Surf. Sci. 254 1087

    [19]

    Yang Z, Zhang M, Liao Y B, Tian Q, Li Q S, Zhang Y, Zhuang Z 2010 Appl. Opt. 49 2736

    [20]

    Liu N, Hui J, Sun C Q, Dong J H, Zhang L Z, Xiao H 2006 Sensors 6 835

    [21]

    Yang M H, Dai J X, Li X B, Wang J J 2010 J. Appl. Phys. 108 033102

    [22]

    Dai J X, Yang M H, Chen Y, Cao K, Liao H S, Zhang P C 2011 Opt. Express 19 6141

    [23]

    Dikovska A O, Atanasova G B, Nedyalkov N N, Stefanov P K, Atanasov P A, Karakoleva E I, Andreev A T 2010 Sensors Actuat. B:Chem. 146 331

    [24]

    Poole Z L, Ohodnicki P, Chen R, Lin Y, Chen K P 2014 Opt. Express 22 2665

    [25]

    Wang M, Yang M, Cheng J, Dai J X, Yang M H, Wang D N 2012 Opt. Lett. 37 1940

    [26]

    Butler M A 1991 J. Eletrochem. Soc. 138 L46

    [27]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [28]

    Park K S, Kim Y H, Eom J B 2011 Opt. Express 19 18190

    [29]

    Wang M, Yang M H, Cheng J, Zhang G L, Liao C R, Wang D N 2013 IEEE Photon. Tech. Lett. 25 713

    [30]

    Zhang Y, Li Q S, Zhuang Z. 2011 Proceedings of 21st International Conference Optis Fiber Sensors Ottawa, Canada, May 15-19, 2011 p775369

    [31]

    Butler M A, Ginley D S 1988 J. Appl. Phys. 64 3706

    [32]

    Karanja J M, Dai Y T, Zhou X, Liu B, Yang M H 2015 Opt. Express 23 31034

    [33]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Opt. Sin. 7 86 (in Chinese)[张伟刚, 刘卓琳, 殷丽梅2011光学学报7 86]

  • [1]

    Kao T W, Tayler H F 1996 Opt. Lett. 21 615

    [2]

    Rao Y J 2006 Opt. Fiber Technol. 12 227

    [3]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightw. Technol. 21 1320

    [4]

    Woolley A T, Marbles R A 1995 Anal. Chem. 67 3676

    [5]

    Qiu F, Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 94 152

    [6]

    Matsumiya M, Shin W, Izu N, Murayama N 2003 Sensors Actuat. B:Chem. 93 309

    [7]

    Ryzhikov A S, Shatokhin A N, Putilin F N, Rumyantseva M N, Gaskov A M, Labeau M 2005 Sensors Actuat. B:Chem. 107 387

    [8]

    Shukla S, Seal S, Ludwig L, Parish C 2004 Sensors Actuat. B:Chem. 97 256

    [9]

    Tan O K, Zhu W, Tse M S, Yao X 1999 Mater. Sci. Eng. B 58 221

    [10]

    Gong J W, Chen Q F, Fei W F, Seal S 2004 Sensors Actuat. B:Chem. 102 117

    [11]

    Yang M H, Dai J X 2012 Photon. Sensors 2 14

    [12]

    Yang M H, Dai J X, Zhou C M, Jiang D S 2009 Opt. Express 17 20777

    [13]

    Butler M A 1994 J. Electrochem. Soc. 138 L46

    [14]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [15]

    Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clment M 2000 Sensors Actuat. B:Chem. 67 57

    [16]

    Dikovska A O, Atanasov P A, Stoyanchov T R, Andreev A T, Karakoleva E I, Zafirova B S 2007 Appl. Opt. 46 2481

    [17]

    Kim K T, Song H S, Mah J P, Hong K B, Im K, Baik S J, Yoon Y I 2007 IEEE Sens. J. 7 1767

    [18]

    Dikovska A O, Atanasov P A, Andreev A T, Zafirova B S, Karakoleva E I, Stoyanchov T R 2007 Appl. Surf. Sci. 254 1087

    [19]

    Yang Z, Zhang M, Liao Y B, Tian Q, Li Q S, Zhang Y, Zhuang Z 2010 Appl. Opt. 49 2736

    [20]

    Liu N, Hui J, Sun C Q, Dong J H, Zhang L Z, Xiao H 2006 Sensors 6 835

    [21]

    Yang M H, Dai J X, Li X B, Wang J J 2010 J. Appl. Phys. 108 033102

    [22]

    Dai J X, Yang M H, Chen Y, Cao K, Liao H S, Zhang P C 2011 Opt. Express 19 6141

    [23]

    Dikovska A O, Atanasova G B, Nedyalkov N N, Stefanov P K, Atanasov P A, Karakoleva E I, Andreev A T 2010 Sensors Actuat. B:Chem. 146 331

    [24]

    Poole Z L, Ohodnicki P, Chen R, Lin Y, Chen K P 2014 Opt. Express 22 2665

    [25]

    Wang M, Yang M, Cheng J, Dai J X, Yang M H, Wang D N 2012 Opt. Lett. 37 1940

    [26]

    Butler M A 1991 J. Eletrochem. Soc. 138 L46

    [27]

    Butler M A 1994 Sensors Actuat. B:Chem. 22 142

    [28]

    Park K S, Kim Y H, Eom J B 2011 Opt. Express 19 18190

    [29]

    Wang M, Yang M H, Cheng J, Zhang G L, Liao C R, Wang D N 2013 IEEE Photon. Tech. Lett. 25 713

    [30]

    Zhang Y, Li Q S, Zhuang Z. 2011 Proceedings of 21st International Conference Optis Fiber Sensors Ottawa, Canada, May 15-19, 2011 p775369

    [31]

    Butler M A, Ginley D S 1988 J. Appl. Phys. 64 3706

    [32]

    Karanja J M, Dai Y T, Zhou X, Liu B, Yang M H 2015 Opt. Express 23 31034

    [33]

    Zhang W G, Liu Z L, Yin L M 2011 Acta Opt. Sin. 7 86 (in Chinese)[张伟刚, 刘卓琳, 殷丽梅2011光学学报7 86]

  • [1] Liu Yu, Ren Guo-Bin, Jin Wen-Xing, Wu Yue, Yang Yu-Guang, Jian Shui-Sheng. Enhanced selfintegration algorithm for fiber torsion sensor based acoustically-induced fiber grating. Acta Physica Sinica, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [2] Lü Zhi-Guo, Yang Zhi, Li Feng, Li Qiang-Long, Wang Yi-Shan, Yang Xiao-Jun. Generation of multi-wavelength femtosecond laser pulse based on nonlinear propagation of high peak power ultrashort laser pulse in single-mode fiber and spectral selectivity technology. Acta Physica Sinica, 2018, 67(18): 184205. doi: 10.7498/aps.67.20181026
    [3] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [4] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [5] Zhao Yong, Cai Lu, Li Xue-Gang, Lü Ri-Qing. A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature. Acta Physica Sinica, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] He Zu-Yuan, Liu Qing-Wen, Chen Jia-Geng. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [7] Liu Tie-Gen, Yu Zhe, Jiang Jun-Feng, Liu Kun, Zhang Xue-Zhi, Ding Zhen-Yang, Wang Shuang, Hu Hao-Feng, Han Qun, Zhang Hong-Xia, Li Zhi-Hong. Advances of some critical technologies in discrete and distributed optical fiber sensing research. Acta Physica Sinica, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [8] Wang Ting-Ting, Ge Yi-Xian, Chang Jian-Hua, Ke Wei, Wang Ming. Refractive index sensing characteristic of a hybrid-Fabry-Pérot interferometer based on an in-fiber ellipsoidal cavity. Acta Physica Sinica, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [9] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [10] Yang Shen, Rong Qiang-Zhou, Sun Hao, Zhang Jing, Liang Lei, Xu Qin-Fang, Zhan Su-Chang, Du Yan-Ying, Feng Ding-Yi, Qiao Xue-Guang, Hu Man-Li. High temperature probe sensor with high sensitivity based on Michelson interferometer. Acta Physica Sinica, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [11] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [12] Zhu Li-Dan, Sun Fang-Yuan, Zhu Jie, Tang Da-Wei. Study on ultra fast nonequilibrium heat transfers in nano metal films by femtosecond laser pump and probe method. Acta Physica Sinica, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [13] Zhang Chi, Hu Ming-Lie, Song You-Jian, Zhang Xin, Chai Lu, Wang Qing-Yue. An Yb-doped large-mode-area photonic crystal fiber mode-locking laser with free output coupler. Acta Physica Sinica, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [14] Zhu Tao, Song Yun, Rao Yun-Jiang, Zhu Yong. Theory and fabrication of long period fiber grating with rotary refractive index modulation induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [15] Liu Bo-Wen, Hu Ming-Lie, Song You-Jian, Chai Lu, Wang Qing-Yue. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier. Acta Physica Sinica, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [16] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Wen Tian-Shu, Chunyu Shu-Tai. A comparison of energy distribution of hot electrons from the front and the rear sides of targets during the interaction of femtosecond laser with foil targets. Acta Physica Sinica, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [17] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju, Wang Jiu-Ling. Study on characteristics of a CO2-laser-induced ultra-long-period fiber grating. Acta Physica Sinica, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] Guo Wen-Gang, Yang Xiu-Feng, Luo Shao-Jun, Li Yong-Nan, Tu Cheng-Hou, Lü Fu-Yun, Wang Hong-Jie, Li En-Bang, Lü Chao. A fiber sensor for measuring gas concentration based on laser’s transient regime. Acta Physica Sinica, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] Zhu Tao, Rao Yun-Jiang, Mo Qiu-Ju. A high sensitivity fiber-optic torsion sensor based on a novel ultra long-period fiber grating. Acta Physica Sinica, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] Qiao Xue-Guang, Jia Zhen-An, Fu Hai-Wei, Li Ming, Zhou Hong. Theory and experiment about in-fiber Bragg grating temperature sensing. Acta Physica Sinica, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
Metrics
  • Abstract views:  6148
  • PDF Downloads:  492
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2016
  • Accepted Date:  27 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回