Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method to measure the modulation transfer function of Bayer filter color camera

Duan Ya-Xuan Liu Shang-Kuo Chen Yong-Quan Xue Xun Zhao Jian-Ke Gao Li-Min

Citation:

A method to measure the modulation transfer function of Bayer filter color camera

Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of optoelectronic technologies, color cameras have been widely exploited in space remote sensing, earth observations from space, environmental monitoring, urban construction, and many other fields. Currently, most commercial color cameras use a single charge coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) sensor that has a Bayer color filter array (CFA) on its pixel surface to obtain red (R), green (G), or blue (B) samples. As a way of evaluating imaging quality, modulation transfer function (MTF) can provide a comprehensive and objective metric for camera imaging performance. In the conventional knife-edge method for color camera MTF measurement, a linear uniform sampling of the edge spread function (ESF) must be completed before a fast Fourier transform (FFT) can be applied. As the sampling rate becomes large, the number of pixel points on the line which is parallel to the knife-edge become less. So taking average of the pixel points to obtain ESF can be strongly affected by the noise of sensor. Therefore it is necessary to balance the influences of sampling rate and sensor noise on the MTF measurement, and the recommended sampling rate is 4-6. When the tilt angle of knife-edge has an error, the non-uniform sampling ESF can be obtained by the slanted knife-edge method. This leads to a variation in the results of the camera MTF on a spatial frequency scale and early cut-off. The best MTF results of camera can be obtained by rotating knife-edge, calculating MTF power under different tilt angles of knife-edge, and finding the maximum MTF power. And we propose an algorithm for Bayer filter color camera MTF measurement. The algorithm processing includes extracting R, G, B colors of knife-edge images; projection; differential operation; Hanning window filtration; FFT; correction; weighting combination of R, G, B colors MTF; MTF power calculation; optimal tilt angle of knife-edge estimation. To verify the accuracy of the proposed method, the weighting response factors of R, G, B colors are calibrated and an experimental setup for color camera MTF measurement is established. The knife-edge target is rotated in angle steps of 0.02, and the MTF results are calculated under different tilt angles of knife-edge within0.1 surrounding the estimate position by the proposed algorithm. The maximum differences of MTF results between the proposed method and fringe target method are 0.061 (Nyquist frequency fc) and 0.043 (fc/2), respectively. The results show that by searching the optimal tilt angle of knife-edge, the effect of non-uniform sampling on MTF result of color camera can be eliminated. Compared with the conventional method, the proposed method is superior for the measurement of the super-sampled MTF of color camera. Meanwhile, this method can also be applied to MTF measurements of radiographic systems, such as X-ray imaging system and other systems.
      Corresponding author: Duan Ya-Xuan, 6216366@163.com
    • Funds: Project supported by the program of Instrument Innovation of Chinese Academy of Sciences (Grant No. Y32922123Z).
    [1]

    Bryce E B 1975 US Patent 917065[1975-11-04]

    [2]

    Stephen K P, Robert S, Mary A K 1984 Appl. Opt. 23 2572

    [3]

    John C F, Mohammad A K 1990 Appl. Opt. 29 717

    [4]

    Huang J, Liang R S, Si T D, Zhang K M, Tang Z L 1998 Acta Phys. Sin. 47 1289 (in Chinese)[黄菁, 梁瑞生, 司徒达, 张坤明, 唐志列1998物理学报47 1289]

    [5]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese)[戚巽骏, 林斌, 曹向群, 陈钰清2008物理学报57 2854]

    [6]

    Xie X F, Wang H Y, Zhang W 2015 Opt. Commun. 354 202

    [7]

    Morishita J, Doi K, Bollen R, Bunch P C, Hoeschen D, Sirand R C, Sukenobu Y 1995 Med. Phys. 22 193

    [8]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 22446

    [9]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 H195

    [10]

    David Jr N S, James S G, Regina K F 1995 Appl. Opt. 34 746

    [11]

    Cunningham I A, Fenster A 1987 Med. Phys. 14 533

    [12]

    Tatsuya Y, Makoto N, Shinsuke H, Hitoshi I 2004 SPIE 5368 696

    [13]

    Hwang H, Choi Y W, Kwak S, Kim M, Park W 2008 Proc. SPIE 7109 710905

    [14]

    Francoise V R, Dominque L 2010 Opt. Express 18 3531

    [15]

    Kenichiro M, Takayuki Y, Yukihiro N, Masayuki S 2014 Opt. Express 22 6040

    [16]

    Boone J M, Seibert J A 1994 Med. Phys. 21 1541

    [17]

    Dobbins J T, Ergun D L, Rutz L, Hinshaw D A, Blume H, Clark D C 1995 Med. Phys. 22 1581

    [18]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Engng. 46 16403

    [19]

    Stephen K P, Zia-ur R 1999 Opt. Engng. 38 786

    [20]

    Greer P B, Doorn T V 2000 Med. Phys. 27 2048

    [21]

    Joseph W G (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp91-122(in Chinese)[顾德门著(秦可诚, 刘培森, 陈家璧, 曹其智译) 2011傅里叶光学导论(第三版) (北京:电子工业出版社)第91122页]

    [22]

    ISO Standard 122332000 Photography-Electronic Still Picture Cameras Resolution Measurements

    [23]

    Lomb N R 1976 Astrophys. Space Sci. 39 447

    [24]

    Albert M, Bedideck D J, Bakic P R, Maidment A D 1987 Med. Phys. 14 533

    [25]

    Rajeevramanat H, Wesleye S, Griffl B 2002 J. Electron. Imaging 11 306

    [26]

    Cok D R 1987 US Patent 642678[1987-02-10]

    [27]

    Laroche C A 1994 US Patent 373322[1994-12-13]

    [28]

    Hibbard R H 1995 US Patent 382976[1995-01-17]

    [29]

    Hamilton J F, Adams J E 1997 US Patent 629734[1997-05-13]

  • [1]

    Bryce E B 1975 US Patent 917065[1975-11-04]

    [2]

    Stephen K P, Robert S, Mary A K 1984 Appl. Opt. 23 2572

    [3]

    John C F, Mohammad A K 1990 Appl. Opt. 29 717

    [4]

    Huang J, Liang R S, Si T D, Zhang K M, Tang Z L 1998 Acta Phys. Sin. 47 1289 (in Chinese)[黄菁, 梁瑞生, 司徒达, 张坤明, 唐志列1998物理学报47 1289]

    [5]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese)[戚巽骏, 林斌, 曹向群, 陈钰清2008物理学报57 2854]

    [6]

    Xie X F, Wang H Y, Zhang W 2015 Opt. Commun. 354 202

    [7]

    Morishita J, Doi K, Bollen R, Bunch P C, Hoeschen D, Sirand R C, Sukenobu Y 1995 Med. Phys. 22 193

    [8]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 22446

    [9]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 H195

    [10]

    David Jr N S, James S G, Regina K F 1995 Appl. Opt. 34 746

    [11]

    Cunningham I A, Fenster A 1987 Med. Phys. 14 533

    [12]

    Tatsuya Y, Makoto N, Shinsuke H, Hitoshi I 2004 SPIE 5368 696

    [13]

    Hwang H, Choi Y W, Kwak S, Kim M, Park W 2008 Proc. SPIE 7109 710905

    [14]

    Francoise V R, Dominque L 2010 Opt. Express 18 3531

    [15]

    Kenichiro M, Takayuki Y, Yukihiro N, Masayuki S 2014 Opt. Express 22 6040

    [16]

    Boone J M, Seibert J A 1994 Med. Phys. 21 1541

    [17]

    Dobbins J T, Ergun D L, Rutz L, Hinshaw D A, Blume H, Clark D C 1995 Med. Phys. 22 1581

    [18]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Engng. 46 16403

    [19]

    Stephen K P, Zia-ur R 1999 Opt. Engng. 38 786

    [20]

    Greer P B, Doorn T V 2000 Med. Phys. 27 2048

    [21]

    Joseph W G (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp91-122(in Chinese)[顾德门著(秦可诚, 刘培森, 陈家璧, 曹其智译) 2011傅里叶光学导论(第三版) (北京:电子工业出版社)第91122页]

    [22]

    ISO Standard 122332000 Photography-Electronic Still Picture Cameras Resolution Measurements

    [23]

    Lomb N R 1976 Astrophys. Space Sci. 39 447

    [24]

    Albert M, Bedideck D J, Bakic P R, Maidment A D 1987 Med. Phys. 14 533

    [25]

    Rajeevramanat H, Wesleye S, Griffl B 2002 J. Electron. Imaging 11 306

    [26]

    Cok D R 1987 US Patent 642678[1987-02-10]

    [27]

    Laroche C A 1994 US Patent 373322[1994-12-13]

    [28]

    Hibbard R H 1995 US Patent 382976[1995-01-17]

    [29]

    Hamilton J F, Adams J E 1997 US Patent 629734[1997-05-13]

  • [1] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [2] Chen Fa-Xi, Zhao Kan, Li Li-Bo, Guo Bao-Long. High precision time transfer based on laser wavelength tracking. Acta Physica Sinica, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [3] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [4] Deng Wen-Juan, Zhu Bin, Wang Zhuang-Fei, Peng Xin-Cun, Zou Ji-Jun. Resolution characteristics of varying doping and varying composition AlxGa1–xAs/GaAs reflective photocathodes. Acta Physica Sinica, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [5] Liu Shang-Kuo, Wang Tao, Li Kun, Cao Kun, Zhang Xi-Bin, Zhou Yan, Zhao Jian-Ke, Yao Bao-Li. Influence of spectral characteristics of light sources on measuring space camera modulation transfer function. Acta Physica Sinica, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] Zhang Mei, Li Kui-Nian, Li Yang, Sheng Liang, Zhang Yan-Hong. Spatial resolution of novel liquid scintillating capillary array. Acta Physica Sinica, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [7] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [8] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [9] Zheng Xin, Wu Peng-Fei, Rao Rui-Zhong. Image quality analysis method under background radiation in turbid atmosphere. Acta Physica Sinica, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [10] Zhang Min-Rui, He Zheng-Quan, Wang Tao, Tian Jin-Shou. Analysis of the influence of diattenuation on optical imaging system by using the theory of vector plane wave spectrum. Acta Physica Sinica, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [11] Yuan Zheng, Dong Jian-Jun, Li Jin, Chen Tao, Zhang Wen-Hai, Cao Zhu-Rong, Yang Zhi-Wen, Wang Jing, Zhao Yang, Liu Shen-Ye, Yang Jia-Min, Jiang Shao-En. Calibration of the dynamic spatial resolution of framing image-converter. Acta Physica Sinica, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [12] Li Zhao-Hui, Zhao Jian-Ke, Xu Liang, Liu Feng, Guo Yi, Liu Kai, Zhao Qing. Analysis and calibration of precision for point source transmittance system. Acta Physica Sinica, 2016, 65(11): 114206. doi: 10.7498/aps.65.114206
    [13] Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang. Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes. Acta Physica Sinica, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [14] Xiang Li-Bin, Zhang Wen-Xi, Wu Zhou, Lü Xiao-Yu, Li Yang, Zhou Zhi-Sheng, Kong Xin-Xin. Optical transfer function of coherent field imaging based on deviation of receptors. Acta Physica Sinica, 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [15] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [16] Yuan Yong-Teng, Hao Yi-Dan, Hou Li-Fei, Tu Shao-Yong, Deng Bo, Hu Xin, Yi Rong-Qing, Cao Zhu-Rong, Jiang Shao-En, Liu Shen-Ye, Ding Yong-Kun, Miao Wen-Yong. The study of hydrodynamic instability growth measurement. Acta Physica Sinica, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [17] Zhang Rong-Fu, Wang Tao, Pan Chao, Wang Liang-Liang, Zhuang Song-Lin. Extension characteristics of the depth of field for wavefront coding system. Acta Physica Sinica, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [18] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Zhang Yi-Jun, Qiao Jian-Liang. Resolution characteristic of exponential-doping GaAs photocathodes. Acta Physica Sinica, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [19] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [20] Tian Jin-Shou, Zhao Bao-Sheng, Wu Jian-Jun, Zhao Wei, Liu Yun-Quan, Zhang Jie. Theoretical calculation of the modulation transfer function in a femoto-second electron diffraction system. Acta Physica Sinica, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
Metrics
  • Abstract views:  5676
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2016
  • Accepted Date:  06 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回