Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations for two colliding plasma bubbles embedded into an external magnetic field

Yuan Xiao-Xia Zhong Jia-Yong

Citation:

Simulations for two colliding plasma bubbles embedded into an external magnetic field

Yuan Xiao-Xia, Zhong Jia-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A commercial magnetohydrodynamic (MHD) simulation package USIM is used to simulate two colliding plasma bubbles, which are not moving in the same horizontal line along the X direction. One similar experiment is performed on Shenguang II laser facility, in which four laser beams each with a wavelength of 0.351 m, total energy of 1.0 kJ, pulse duration of 1ns, are irradiated on an Al target with a thickness of 50 m. Every two beams constitute one 150-m-diameter focal spot with an intensity of 1015 W/cm2. The X-ray radiation results show the asymmetric and peach-like plasma bubbles, which are different from the results obtained before. Here we report the possible reason for the asymmetric and peach-like structure in experiment. External magnetic field on the order of 1 T is chosen to perform the simulations, which could be a possible applied B field in future experiments performing on the Shenguang II laser facility. In the simulations, different cases, especially the effects of different directional external magnetic fields, are considered. When the reversal directional magnetic fields are embedded in the Y direction, the magnetic field lines are frozen in the plasma bubbles, moving and approaching to each other gradually with the magnetic field lines. The change of the direction of magnetic field lines in the interaction region indicates that the magnetic reconnection has been happened. The outflows between two plasma bubbles in the experimental result could be explained by magnetic reconnection, which can efficiently convert stored magnetic energy into kinetic energy and thermal energy by accelerating and heating plasma particles. The density jump at the position of the bow structure indicates the generation of shock waves, where the velocity of flow v is also larger than the sound speed vs. When the same directional attractive magnetic fields are embedded in the Y direction, magnetic field lines are piled up in the central part, where the magnetic field density is high, which indicates that the magnetic repulsion has been happened. Magnetic repulsion also delays the colliding between two plasma bubbles. The shock waves each with a width of 4 m are also found in this case. The X-ray images in experiment and the density images in simulations show the similar peach-like structures, where the density results could be used to explain the X-ray radiation result for, I(v,Te)(2)/(Te) e(-(hv)/(kTe), I is the radiation intense, v is the plasma velocity, Te is the electron temperature, is the plasma density.Magnetic reconnection is the possible reason for the asymmetrical and peach-like structure in the experiment by comparing all kinds of simulation cases. The present simulation results will be of benefit to the future designing of experimental setup on the Shenguang II laser facility, although a two-fluids model is needed to build a spontaneous magnetic field for the real plasma bubbles.
      Corresponding author: Zhong Jia-Yong, jyzhong@bnu.edu.cn
    • Funds: Project supported by the Beijing Nova Program (Grant No. Z131109000413050), the National Natural Science Foundation of China (Grant No. 11622323), the Fundamental Research Funds for the Central Universities and Science Challenge Project, China (Grant No. JCKY2016212A505).
    [1]

    Schrafel P, Bell K, Greenly J, Seyler C, Kusse B 2015 Phys. Rev. E. 91 013110

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nature Phys. 6 984

    [3]

    Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2014 Phys. Rev. Lett. 113 105003

    [4]

    Chittenden J P, Mitchell I H, Aliaga-Rossel R, Bayley J M, Beg F N, Lorenz A, Haines M G, Decker G 1997 Phys. Plasmas 4 2967

    [5]

    Kato T N, Takabe H 2008 Astrophys. J. 681 L93

    [6]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T 2011 New J. Phys. 13 1433

    [7]

    Suzuki-Vidal F, Lebedev S V, Ciardi A, Pickworth L A, Rodriguez R, Gil J M, Espinosa G, Hartigan P, Swadling G F, Skidmore J, Hall G N, Bennett M, Bland S N, Burdiak G, de Grouchy P, Music J, Suttle L, Hansen E, Frank A 2015 Astrophys. J. 815 96

    [8]

    Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H, Zhang J 2010 Phys. Plasmas 17 122702

    [9]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energy Density Phys. 17 32

    [10]

    Malakit K, Shay M A, Cassak P, Ruffolo D J 2013 Phys. Rev. Lett. 111 135001

    [11]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [12]

    Loverich J, Zhou S C D, Beckwith K, Kundrapu M, Loh M, Mahalingam S, Stoltz P, Hakim A 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, America, January 7-10, 2013 p1185

    [13]

    Loverich J, Hakim A 2010 J. Fusion Energ. 29 532

    [14]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese)[裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚2014物理学报63 145201]

  • [1]

    Schrafel P, Bell K, Greenly J, Seyler C, Kusse B 2015 Phys. Rev. E. 91 013110

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nature Phys. 6 984

    [3]

    Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2014 Phys. Rev. Lett. 113 105003

    [4]

    Chittenden J P, Mitchell I H, Aliaga-Rossel R, Bayley J M, Beg F N, Lorenz A, Haines M G, Decker G 1997 Phys. Plasmas 4 2967

    [5]

    Kato T N, Takabe H 2008 Astrophys. J. 681 L93

    [6]

    Liu X, Li Y T, Zhang Y, Zhong J Y, Zheng W D, Dong Q L, Chen M, Zhao G, Sakawa Y, Morita T 2011 New J. Phys. 13 1433

    [7]

    Suzuki-Vidal F, Lebedev S V, Ciardi A, Pickworth L A, Rodriguez R, Gil J M, Espinosa G, Hartigan P, Swadling G F, Skidmore J, Hall G N, Bennett M, Bland S N, Burdiak G, de Grouchy P, Music J, Suttle L, Hansen E, Frank A 2015 Astrophys. J. 815 96

    [8]

    Morita T, Sakawa Y, Kuramitsu Y, Dono S, Aoki H, Tanji H, Kato T N, Li Y T, Zhang Y, Liu X, Zhong J Y, Takabe H, Zhang J 2010 Phys. Plasmas 17 122702

    [9]

    Zhang K, Zhong J Y, Wang J Q, Pei X X, Wei H G, Yuan D W, Yang Z W, Wang C, Li F, Han B, Yin C L, Liao G Q, Fang Y, Yang S, Yuan X H, Sakawa Y, Morita T, Cao Z R, Jiang S E, Ding Y K, Kuramitsu Y, Liang G Y, Wang F L, Li Y T, Zhu J Q, Zhang J, Zhao G 2015 High Energy Density Phys. 17 32

    [10]

    Malakit K, Shay M A, Cassak P, Ruffolo D J 2013 Phys. Rev. Lett. 111 135001

    [11]

    Rosenberg M J, Li C K, Fox W, Igumenshchev I, Sguin F H, Town R P J, Frenje J A, Stoeckl C, Glebov V, Petrasso R D 2015 Nat. Commun. 6 6190

    [12]

    Loverich J, Zhou S C D, Beckwith K, Kundrapu M, Loh M, Mahalingam S, Stoltz P, Hakim A 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, America, January 7-10, 2013 p1185

    [13]

    Loverich J, Hakim A 2010 J. Fusion Energ. 29 532

    [14]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese)[裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚2014物理学报63 145201]

  • [1] Wang Jin-ling, Zhang Kun, Lin Ji, Li Hui-jun. Generation and modulation of shock waves in two-dimensional polariton condensates. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240229
    [2] Wang Yun-Liang, Yan Xue-Qing. Isolated attosecond pulse generation from the interaction of intense laser pulse with solid density plasma. Acta Physica Sinica, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [3] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma. Acta Physica Sinica, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [4] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] Jia Rui-Yu, Fang Ping-Ping, Gao Chao, Lin Ji. Quenched solitons and shock waves in Bose-Einstein condensates. Acta Physica Sinica, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [6] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [7] Yu Jia-Cheng, Zhong Jia-Yong, An Wei-Ming, Ping Yong-Li. Potential distribution behind target in intense and short pulsed laser-driven magnetic reconnection. Acta Physica Sinica, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [8] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [9] Xin Jian-Ting, Zhao Yong-Qiang, Chu Gen-Bai, Xi Tao, Shui Min, Fan Wei, He Wei-Hua, Gu Yu-Qiu. Experimental investigation of tin fragments mixing with gas subjected to laser driven shock. Acta Physica Sinica, 2017, 66(18): 186201. doi: 10.7498/aps.66.186201
    [10] Li Yan-Fei, Li Yu-Tong, Zhu Bao-Jun, Yuan Da-Wei, Li Fang, Zhang Zhe, Zhong Jia-Yong, Wei Hui-Gang, Pei Xiao-Xing, Liu Chang, Yuan Xiao-Xia, Zhao Jia-Rui, Han Bo, Liao Guo-Qian, Lu Xin, Hua Neng, Zhu Bao-Qiang, Zhu Jian-Qiang, Fang Zhi-Heng, An Hong-Hai, Huang Xiu-Guang, Zhao Gang, Zhang Jie. Strong magnetic fields generated with a metal wire irradiated by high power laser pulses and its effect on bow shock. Acta Physica Sinica, 2017, 66(9): 095202. doi: 10.7498/aps.66.095202
    [11] Zhang Kai, Zhong Jia-Yong, Pei Xiao-Xing, Li Yu-Tong, Sakawa Youichi, Wei Hui-Gang, Yuan Da-Wei, Li Fang, Han Bo, Wang Chen, He Hao, Yin Chuan-Lei, Liao Guo-Qian, Fang Yuan, Yang Su, Yuan Xiao-Hui, Liang Gui-Yun, Wang Fei-Lu, Zhu Jian-Qiang, Ding Yong-Kun, Zhang Jie, Zhao Gang. Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection. Acta Physica Sinica, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [12] Pei Xiao-Xing, Zhong Jia-Yong, Zhang Kai, Zheng Wu-Di, Liang Gui-Yun, Wang Fei-Lu, Li Yu-Tong, Zhao Gang. W43A Jet:strongly related to the magnetic field testified in laboratory. Acta Physica Sinica, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [13] Xin Jian-Ting, Gu Yu-Qiu, Li Ping, Luo Xuan, Jiang Bai-Bin, Tan Fang, Han Dan, Wu Yin-Zhong, Zhao Zong-Qing, Shu Jing-Qin, Zhang Bao-Han. Study on metal ejection under laser shock loading. Acta Physica Sinica, 2012, 61(23): 236201. doi: 10.7498/aps.61.236201
    [14] Wang Feng, Peng Xiao-Shi, Mei Lu-Sheng, Liu Shen-Ye, Jiang Xiao-Hua, Ding Yong-Kun. Shock timing experiment based on imaging velocity interferometer system for any reflector. Acta Physica Sinica, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [15] Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang. Mesoscopic picture of fracture in porous brittle material under shock wave compression. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [16] Wang Feng, Peng Xiao-Shi, Liu Shen-Ye, Jiang Xiao-Hua, Xu Tao, Ding Yong-Kun, Zhang Bao-Han. Shock experiment with sandwiched target in laser indirect-drive experiment. Acta Physica Sinica, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [17] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [18] Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da, Chen Da-Nian, Wang Huan-Ran. Effective shear modulus in shock-compressed aluminum. Acta Physica Sinica, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] Fu Si-Zu, Huang Xiu-Guang, Wu Jiang, Wang Rui-Rong, Ma Min-Xun, He Ju-Hua, Ye Jun-Jian, Gu Yuan. Experimental study of shock wave propagating character in targets driven by an i nclined-incident laser. Acta Physica Sinica, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
Metrics
  • Abstract views:  5428
  • PDF Downloads:  255
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2016
  • Accepted Date:  06 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回